首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在不同烧结温度、30 MPa压力下保温1h制备了不同Yb_2O_3含量的氮化硅陶瓷,通过XRD、SEM、阿基米德排水法、三点抗弯强度法、Vickers压痕法等手段测定了氮化硅陶瓷的物相组成、显微结构、致密度、抗弯强度、断裂韧性和硬度。研究了烧结温度对不同Yb_2O_3含量的氮化硅陶瓷的相变、显微结构和力学性能的影响。研究表明,Yb_2O_3含量的变化导致了Yb_2O_3和氮化硅表面SiO_2反应配比的变化,从而在Yb_2O_3-SiO_2二元体系和Yb_2O_3-SiO_2-Si3_N_4三元体系中,晶界第二相生成物也发生了变化。这些第二相生成物种类与烧结温度共同影响氮化硅陶瓷材料的显微结构和力学性能。5 wt%Yb_2O_3含量的Si_3N_4陶瓷在1850℃获得所有9个样品中最大的抗弯强度和断裂韧性,分别为874 MPa和5.83 MPa·m1/2;15 wt%Yb_2O_3含量Si_3N_4陶瓷中出现的第二相Yb_4Si_2O_7N_2,抑制了氮化硅晶粒在高温下的异常长大。  相似文献   

2.
以亚微米级氮化硅为原料、Al_2O_3–Y_2O_3为烧结助剂,利用放电等离子烧结(spark plasma sintering,SPS)烧结技术制备氮化硅陶瓷。用X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行分析,研究了烧结温度对氮化硅陶瓷力学性能和显微结构的影响。结果表明,采用SPS烧结技术可在较低温度下获得致密度较高、综合力学性能较好的β相氮化硅陶瓷。随着烧结温度的提高,样品致密度、抗弯强度、断裂韧性均不断增大,在1 550℃时,其抗弯强度和断裂韧性分别达到973.74 MPa和8.23 MPa?m1/2。在1 550℃以下,陶瓷样品中β相氮化硅含量可达到98%,显微结构均匀,晶粒发育良好、呈长柱状,晶间紧密连接,晶间气孔较少。继续升高温度,部分晶粒发生异常长大,产生了更多的显微孔洞,抗弯强度急剧下降。  相似文献   

3.
以MgO–Al_2O_3–CeO_2复合体系为烧结助剂,采用放电等离子烧结工艺制备氮化硅陶瓷。研究了MgO–Al_2O_3–CeO_2含量、烧结温度对氮化硅陶瓷显微结构及力学性能的影响;探讨了复合烧结助剂作用下氮化硅陶瓷的烧结机理。结果表明:当混合粉体中Si_3N_4、MgO、Al_2O_3和CeO_2的质量比为91:3:3:3、烧结温度为1600℃时,氮化硅烧结体相对密度(99.70%)、硬度(18.84GPa)和断裂韧性(8.82MPa?m1/2)达最大值,晶粒以长柱状的β相为主,α-Si_3N_4→β-Si_3N_4相转变率达93%;当混合粉体中Si_3N_4、MgO、Al2O3和CeO_2的质量比为88:4:4:4、烧结温度为1600℃时,烧结体抗弯强度(1086MPa)达到最大值。  相似文献   

4.
氮化硅反应烧结的研究进展   总被引:1,自引:0,他引:1  
氮化硅作为高温功能陶瓷性能优越,但将其制备成陶瓷零件比较困难,目前一般用反应烧结法制备氮化硅陶瓷零件。此外,反应烧结制备氮化硅陶瓷还具有成本低、烧结温度低、产品成型好、陶瓷高温性能好等优点。综述了氮化硅陶瓷反应烧结工艺流程和工艺的优缺点,着重介绍了氮化硅反应烧结在成型工艺、烧结工艺、原材料影响、后处理和陶瓷增韧等方面所取得的进展。  相似文献   

5.
《陶瓷》2017,(9)
利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3、Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674MPa,断裂韧性为6.34MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性分别达到686MPa和7.42MPa·m~(1/2)。通过无压烧结工艺,在1750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7。笔者着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。在氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性却得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺入量为2wt%时断裂韧性达到最大(7.68MPa·m~(1/2)),提高了20%以上。  相似文献   

6.
氮化硅陶瓷具有优异的物理机械性能和化学性能,被广泛应用于高温、化工、冶金、航空航天等领域。在结构陶瓷中氮化硅陶瓷虽具有相对较高的断裂韧性,但为了进一步拓宽氮化硅陶瓷的运用领域和提高其使用可靠性,改善其断裂韧性一直是该材料研究的重要课题。笔者通过利用氮化硅陶瓷的自增韧技术,使用复合烧结助剂和在氮化硅基体中添加长柱状β-Si_3N_4晶种,制备高断裂韧性的氮化硅陶瓷。采用X射线衍射、扫描电镜、阿基米德法、三点抗弯曲强度、单边切口梁法等测试方法对陶瓷的组成、显微结构、显气孔率以及抗弯强度和断裂韧性等进行了分析与表征。首先研究了无压烧结制备氮化硅陶瓷过程中,烧结助剂(Y_2O_3和Al_2O_3)对其烧结性能和力学性能的影响,当Y_2O_3含量为8wt%,Al_2O_3含量为4wt%时,氮化硅陶瓷的相对密度达95%以上,抗弯强度为674 MPa,断裂韧性为6.34 MPa·m~(1/2)。再通过引入La_2O_3提高氮化硅晶粒的长径比,使氮化硅陶瓷的抗弯强度和断裂韧性达到686 MPa和7.42 MPa·m~(1/2)。笔者通过无压烧结工艺,在1 750℃制备了长柱状的β-Si_3N_4晶种,晶种的平均长度为2.82μm,平均粒径为0.6μm,平均长径比为4.7,着重研究了晶种对氮化硅陶瓷烧结性能和力学性能的影响。氮化硅陶瓷中加入晶种后,其烧结性能和抗弯强度略有降低,但断裂韧性得到了很大的提高;且随着晶种添加量的增加,断裂韧性先升高再降低,掺杂量为2wt%时,断裂韧性达到最大(7.68 MPa·m~(1/2)),提高了20%以上。  相似文献   

7.
一种新的烧结氮化硅陶瓷 ,其制作方法是同时添加氧化镁 (MgO)稀土氧化物 (RO)作为氮化硅陶瓷的烧结助剂 ,在 1 45 0℃ ,氧化镁 稀土氧化物就会与氮化硅粉末表面的二氧化硅反应生成大量硅酸盐液相 ,使氮化硅陶瓷致密。通过控制MgO RO的组成和烧结工艺 ,可制取各种不同性能的烧结氮化硅陶瓷 ,满足不同用途的需求。用该法制得和烧结氮化硅陶瓷 ,可高效、经济地制造各种复杂形状的产品 ,如切削刀具、密封环、轴承、喷嘴及各种耐高温、耐磨损、耐腐蚀制品等添加氧化镁及稀土氧化物的烧结氮化硅陶瓷  相似文献   

8.
氮化硅陶瓷的烧结   总被引:3,自引:0,他引:3  
氮化硅陶瓷广泛用作高温结构材料,是很有前途的陶瓷材料之一。本文研究了氮化硅陶瓷烧结动力学,分析了影响氮化硅陶瓷烧结的因素,为氮化硅陶瓷烧结提供了依据  相似文献   

9.
以微米级氮化硅铁为原料、Al_2O_3–Y_2O_3为烧结助剂,采用气压烧结制备氮化硅铁复相陶瓷。通过X射线衍射和扫描电子显微镜对试样的物相组成和显微结构进行了表征,研究了烧结温度对氮化硅铁复相陶瓷成分、显微结构和力学性能的影响。结果表明:烧结温度对于氮化硅铁陶瓷的显微结构和力学性能具有显著影响。随着烧结温度的升高,样品致密度、抗弯强度、断裂韧性先增大后降低,在1 770℃时均达到最大值,密度、抗弯强度和断裂韧性分别达到3.31 g/cm~3、435 MPa和6.97 MPa?m~(1/2)。在1 770℃以下时,陶瓷样品中主晶相为长柱状的β-Si3N4,晶粒彼此间结合紧密,陶瓷气孔率较低。温度继续升高,含铁相和氮化硅发生反应,气孔率增大,抗弯强度和断裂韧性开始下降。如果进一步提高硅铁的氮化率,采用游离硅低、铁含量低及纯度较高的氮化硅铁粉末制备氮化硅铁陶瓷,材料的性能有望得到进一步的提高。  相似文献   

10.
氮化硅是一种具有优良性能的陶瓷材料,是一种理想的高温结构材料和高速切削刀具材料,近年来随着微波技术的发展,氮化硅的微波烧结越来越受关注。本文简述了氮化硅陶瓷材料传统烧结与微波烧结的研究现状;比较分析了各种烧结技术制备的氮化硅陶瓷的微观结构和力学性能,得出了微波烧结氮化硅陶瓷的优越性;最后提出氮化硅陶瓷微波烧结在未来研究中还需解决的问题。  相似文献   

11.
于之东  刘大成 《中国陶瓷》1999,35(3):21-23,25
氮化硅陶瓷广泛用作高温结构材料,是很有前途的陶瓷材料之一。本文研究了氮化硅硅瓷烧结动力学,分析了影响氮化硅陶瓷烧结的因素,为氮化硅陶瓷结提供了依据。  相似文献   

12.
为了制备致密且抗水化的CaF_2陶瓷,以w(CaF_2)=99.9%的氟化钙为原料,分别添加质量分数为0、0.5%、1%、2%、4%和6%的高纯Y_2O_3粉作为添加剂,经180 MPa等静压成型后,在空气气氛中于1 300℃保温2 h烧结制成CaF_2陶瓷,研究添加Y_2O_3对CaF_2陶瓷烧结及抗水化性能的影响。结果表明:在氟化钙原料粉中添加适量的Y_2O_3制备的CaF_2陶瓷,其烧结致密度和抗水化性能显著提高。这是因为Y_2O_3与CaF_2陶瓷在烧结过程中产生的Ca O杂质反应生成了Ca3Y2O6液相,覆盖在氟化钙陶瓷表面,从而阻止了氟化钙陶瓷和水蒸气的进一步接触。在本研究中,Y_2O_3的适宜添加量在1%(w)左右。  相似文献   

13.
刘剑  谢志鹏  肖志才  肖毅 《硅酸盐学报》2020,(12):1865-1871
以氮化硅(α相≥95%,平均粒径0.5μm)为原料,添加MgO–Y2O3为复合烧结助剂,采用气压烧结技术制备了β相高导热氮化硅陶瓷。研究和讨论了烧结助剂含量和比例对氮化硅陶瓷致密化过程、热导率、力学性能和显微结构的影响。结果表明:当烧结助剂添加量为5%MgO+4%Y2O3时,使用气压烧结在1 890℃烧结2 h,试样的热导率可达到85.96 W·m–1K–1,抗弯强度达到873 MPa,断裂韧性为8.39 MPa·m1/2;在烧结过程中Y2O3与Si3N4反应形成化合物固定在晶界处,减少了固溶进氮化硅晶格中氧的含量,起到了净化氮化硅晶格的作用,提高了烧结试样的热导率;过量的MgO或Y2O3在烧结过程中形成的化合物残留在晶界处,降低了材料的力学性能和热导率。  相似文献   

14.
以Al_2O_3-Y_2O_3和Mg O-Y_2O_3为烧结助剂,通过热压烧结分别在1600℃和1800℃下制备Si_3N_4陶瓷。结果表明:以Al_2O_3-Y_2O_3助剂时,在1800℃热压烧结制备的Si_3N_4陶瓷具有显著的双峰结构和优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为15.60±0.27 GPa、1105.99±68.39 MPa和7.13±0.37 MPa·m~(1/2);以Mg O-Y_2O_3为助剂时,在1600℃热压烧结制备的Si_3N_4陶瓷具有较高的致密度,显微结构含有长径比较高的晶须状Si_3N_4晶粒,并且具有优异的综合力学性能,其硬度、抗弯强度、断裂韧性分别为16.53±0.21 GPa、1166.90±61.73 MPa和6.74±0.17 MPa·m~(1/2)。因此,在研究烧结助剂对Si_3N_4陶瓷性能的影响时,需结合其特定合适的烧结温度,才能有望获得综合性能优异的Si_3N_4陶瓷。  相似文献   

15.
采用稻壳和MgO-Al_2O_3-NaF复合烧结助剂成功制备出多孔氮化硅陶瓷。探索了烧结助剂Al_2O_3的添加量对试样线收缩率、显气孔率和强度的影响。结果表明,试样的线收缩率随烧结助剂Al_2O_3掺量的增加逐渐增大,显气孔率逐渐降低,抗弯强度提高。  相似文献   

16.
Si3N4-MgO-CeO2陶瓷烧结中的致密化与自动析晶   总被引:1,自引:0,他引:1  
用等离子放电烧结的方法制备了Si3N4-MgO-CeO2陶瓷,用排水法测定了密度,用X射线衍射的方法测定了物相变化。发现在烧结过程中,高于l450℃时,MgO-CeO2就会与氮化硅粉末表面的SiO2反应形成硅酸盐液相,促进烧结致密化,冷却后形成玻璃相留在晶界,氮化硅的致密化在l500℃接近完成。但高于l550℃烧结,MgO反而会析晶,提高氮化硅陶瓷的高温性能。  相似文献   

17.
《现代技术陶瓷》2007,28(3):41-44
200567 放电等离子烧结Si3N4/Al2O3纳米复相陶瓷的增韧机理;200568 复合添加剂对纳米氧化铝陶瓷致密化的影响;200569 硅粉粒径对反应烧结多孔氮化硅陶瓷介电性能的影响;200570 添加Y2O3-Al2O3烧结助剂的氮化硅陶瓷的超高压烧结;200571 Al2O3陶瓷高温釉氢烧失光原因的研究……  相似文献   

18.
以α-Si3 N4为原料,Y2 O3和MgO为复合烧结助剂,通过无压烧结制备出氮化硅陶瓷。为了优化实验配方和工艺参数,采用正交实验研究了成型压力、保压时间、保温时间、烧结温度、烧结助剂含量以及配比对氮化硅陶瓷气孔率和抗弯强度的影响规律。结果表明,影响氮化硅陶瓷气孔率的主要因素是烧结助剂含量和配比,而影响其抗弯强度的主要因素是烧结助剂配比和烧结温度。经分析得出,最佳工艺参数为成型压力16 MPa,保压时间120 s,保温时间2 h,烧结温度1750℃,烧结助剂含量12wt%,烧结助剂配比1∶1;经最佳工艺烧结后的氮化硅陶瓷,相对密度为94.53%,气孔率为1.09%,抗弯强度为410.73 MPa。  相似文献   

19.
烧结助剂对氮化硅陶瓷显微结构和性能的影响   总被引:3,自引:0,他引:3  
氮化硅中氮原子和硅原子的自扩散系数很低,致密化所必需的扩散速度和烧结驱动力都很小,在烧结过程中需采用烧结助剂。烧结助剂是影响氮化硅陶瓷的显微结构和性能的关键因素之一。有效的烧结助剂不但可以改善氮化硅陶瓷的显微结构,而且可以提高氮化硅陶瓷的高温性能和抗氧化性能。  相似文献   

20.
本文以高纯度的Nb_2O_5、Na_2CO_3、K_2CO_3粉体为原料,采用固相反应烧结的陶瓷制备方法,分别添加ZnO和CuO、K_4CuN_b8O_(23)、K_(5.4)CU_(1.3)Ta_(10)O_(29)、MnO_2、Bi_2O_3、Li_2O或Sb_2O_3等烧结助剂,制备了KNN无铅压电陶瓷材料,并研究了不同的烧结助剂对KNN压电陶瓷性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号