首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A postbuckling analysis is presented for a shear deformable laminated cylindrical shell of finite length subjected to compressive axial loads. The governing equations are based on Reddy’s higher-order shear deformation shell theory with a von Kármán–Donnell type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical shells under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, unstiffened or stiffened, moderately thick, cross-ply laminated cylindrical shells. The effects of transverse shear deformation, shell geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.  相似文献   

2.
A constrained minimization method is presented for the identification of elastic constants of shear deformable laminated composite plates. Strains and∕or displacements obtained from static testing of laminated composite plates are used in the proposed method to identify the elastic constants of the plates. In the identification process, the trial elastic constants of a laminated composite plate are used in a finite-element analysis to predict the strains and displacements of the plate. An error function is established to measure the differences between the experimental and theoretical predictions of strains and∕or displacements. A constrained minimization technique is used to minimize the error function and update the trial elastic constants. The best estimates of the elastic constants of the plate are then determined by subsequently reducing the size of the feasible region of the elastic constants and making the error function a global minimum. The accuracy and applications of the proposed method are demonstrated by means of a number of examples. A sensitivity analysis is also performed to study the effects of variations of experimental data on the accuracy of the identified elastic constants.  相似文献   

3.
The paper deals with the theoretical investigation of the postbuckling of laminated composite rectangular plates subjected to uniform in-plane temperature. An analytical method based on Chebyshev polynomial is employed. The formulation is based on Reissner–Mindlin plate theory and von Kármán nonlinear kinematics. The resulting nonlinear coupled differential equations are linearized using quadratic extrapolation technique. Double Chebyshev finite series is used to discretize the differential equations. An incremental iterative approach is employed for the solution. The effects of temperature dependent mechanical and thermal properties on the limiting/critical temperature and the postbuckling response are studied. The numerical results for different boundary conditions and lamination schemes are presented. Analysis results indicate that temperature dependent properties reduce the critical/limiting temperature and postbuckling strength.  相似文献   

4.
The influence of hygrothermal effects on the nonlinear bending of shear deformable laminated plates subjected to a uniform or sinusoidal load is investigated using a micro-to-micromechanical analytical model. The material properties of the composite are affected by the variation of temperature and mositure, and are based on a micromechanical model of a laminate. The governing equations of a laminated plate are based on Reddy’s higher-order shear deformation plate theory with von Kármán-type kinematic nonlinearity, and including hygrothermal effects. A perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern nonlinear bending behavior of antisymmetric angle-ply and symmetric cross-ply laminated plates under different sets of environmental conditions. The results presented show the effects of temperature rise, the degree of moisture concentration, and fiber volume fraction on the nonlinear bending behavior of the plate.  相似文献   

5.
The paper deals with the effect of moisture and temperature on the postbuckling response of a laminated composite plate subjected to hygrothermomechanical loadings. Mechanical loading consists of uniaxial, biaxial, shear, and their combinations. The distribution of temperature and moisture on the surface is considered to be uniform. The degradation in material properties due to moisture and temperature is taken into account using a micromechanical model. The mathematical formulation is based on higher order shear deformation theory and von Karman’s nonlinear kinematics. The quadratic extrapolation technique and fast converging finite double Chebyshev series are used for linearization and spatial discretization of the governing nonlinear equations of equilibrium, respectively. The effects of temperature rise, moisture concentration, fiber-volume fraction, and plate parameters on buckling and postbuckling response of the plate are presented.  相似文献   

6.
Postbuckling analysis is presented for shear deformable cross-ply laminated composite rectangular plates subjected to the combination of in-plane edge compressive mechanical loading and thermal loads due to a linearly varying temperature across the thickness. The formulation is based on the first-order shear deformation theory and von-Karman-type nonlinearity. The analysis uses a quadratic extrapolation technique for linearization and Chebyshev polynomials for spatial discretization. An incremental iterative approach is employed to estimate the critical load. The boundary conditions consisting of clamped, simply supported, free edge, and their combinations are considered. The effects of the thinness ratio, aspect ratio, lamination scheme, the number of layers, and the modulus ratio on the critical load/limit load and postbuckling behavior are studied.  相似文献   

7.
By considering the total transverse displacement of a sandwich plate as the sum of the displacement due to bending of the plate and that due to shear deformation of the core, a 72 degrees of freedom high precision high order triangular-plate element is developed for the thermal postbuckling analysis of rectangular composite sandwich plates. Due to an uneven thermal expansion coefficient in the two local material directions, the buckling mode of the plate can be changed from one mode to another as the fiber orientation or aspect ratio of the plate is varied. By examining the local minimum of total potential energy of each mode, a clear picture of buckle pattern change is presented. Numerical results show that for a sandwich plate with cross-ply laminated faces, buckle pattern change may occur when the plate has a long narrow shape. However, for sandwich plates with angle-ply laminated faces, the buckling mode is dependent on the fiber orientation and aspect ratio of the plate. The effect of temperature gradient on the postbuckling behavior of the sandwich plate is limited except for angle-ply laminated sandwich plates with fiber angle greater than 70° or less than 20°.  相似文献   

8.
Numerical simulations are used in conjunction with experiments to study the buckling and postbuckling responses and failure initiation of flat, unstiffened composite panels. The numerical simulations are conducted using two‐dimensional shear‐flexible finite elements. The effect of the laminate stacking sequence on the buckling and postbuckling responses is studied. Correlation between numerical and experimental results is good through buckling, but the numerical models overestimate the postbuckling stiffness of the panels when nominal values of the material properties are used. To explain the discrepancies in the postbuckling stiffnesses, analytic sensitivity derivatives are calculated and used to study the sensitivity of the buckling and postbuckling responses to variations in different material and lamination parameters. Experimental results indicate that failure occurs along a nodal line. Numerical results show that the location of failure initiation corresponds to that of the maximum transverse shear‐strain energy density in the panel, which occurs at the edge of the panel at a nodal line. However, the transverse shear deformation has a negligible effect on the global response characteristics of the panel.  相似文献   

9.
The nonlinear response of laminated fiber reinforced plastic (FRP) plates modeled with finite elements and excited by stochastic loading is studied. FRPs are being used widely for structural applications in recent years due to their outstanding mechanical properties. Most FRP materials have strong anisotropic properties and exhibit significant nonlinearity in the shear stress-strain law. A high-order shear theory is used to account for the variation of strains through the thickness, since Kirchhoff and Mindlin plate theories are usually inadequate for modeling laminated FRP plates of reasonable thickness. Nonlinear random vibration analysis is performed using the method of equivalent linearization to account for material nonlinearity. A formulation for deterministic dynamic analysis is also developed and performed to verify the accuracy of the approximate nonlinear random vibration method. The random vibration analysis is found to be sufficiently accurate and is considerably more cost-effective than the use of deterministic simulations.  相似文献   

10.
The bending response of sandwich plates with stiff laminated face sheets is studied by a six-noded triangular element having seven degrees of freedom at each node. The element formulation is based on a refined higher-order plate theory having all the features for an accurate modeling of sandwich plates with affordable unknowns. The refined plate theory is quite attractive but suffers from a problem concerned with an interelement continuity requirement when it is used in finite element analysis. The problem has been dealt satisfactorily in this new element, which is applied to the analysis of sandwich plates of different kinds.  相似文献   

11.
A novel formulation is used to study the thermal postbuckling behavior of circular plates, with the edges supported to not have lateral deflection and elastically restrained against rotation. The elastic restraint is mathematically represented by an elastic rotational spring. The circular plate is subjected to a uniform edge compressive radial load, developed because of a uniform temperature rise. The formulation is on the basis of on the radial tensile load developed in the plate because of the large deflections of the plate with edges immovable in the plane normal to the edge and the linear buckling load corresponding to the uniform edge radial compressive load. The developed radial tensile load is obtained by using Berger’s approximation. The numerical results obtained from the present investigation in terms of the ratios of the postbuckling to the buckling loads for several rotational spring stiffness values compare well with those obtained by using the versatile finite-element analysis.  相似文献   

12.
The postbuckling analysis of symmetric and antisymmetric cross-ply laminated cylindrical shell panels subjected to thermomechanical loading is examined in this paper. The formulation is based on an extension of Reissner’s shallow shell simplifications and accounts for parabolic distribution of transverse shear strains. Adopting a multiterm Galerkin’s method, the governing nonlinear partial differential equations are reduced into a set of nonlinear algebraic equations. The nonlinear equilibrium paths through limit points are traced using the Newton–Raphson method in conjunction with Riks approach. Numerical results are presented for symmetric [?start0/90/0end?] and antisymmetric [?start0/90end?] cross-ply laminated cylindrical shell panels, that illustrate the influence of mechanical edge loads, lateral distributed load, initial imperfection, and temperature field on the limit loads and snap-through behavior.  相似文献   

13.
Hybrid laminated composite plates are analyzed using a nine‐noded isoparametric plate finite element based on Mindlin's theory. The shear flexibility is included in the finite element modeling. Shear flexibility is of importance, especially when different materials are used in the laminate design. Hybrid laminates consisting of graphite∕epoxy and kevlar∕epoxy plies are considered for illustration. The study indicates that hybrid laminates provide stiffnesses that are intermediate to the values obtained for single‐material laminates. The minimum deflection is achieved at different fiber orientation for thick plates compared to thin plates. The deflection behavior of hybrid laminates seems to be less affected by outer‐ply stiffness in the case of thick plates. Thick plates show less variation in the first natural frequency with fiber orientation but hybridization changes the natural frequency considerably. The first natural frequency of the hybrid laminate can be made higher than the stiffer single‐material laminate.  相似文献   

14.
The present study estimates the critical/buckling loads of laminated composite rectangular plates under in-plane uniaxial and biaxial loadings. The formulation is based on the first-order shear deformation theory and von-Karman-type nonlinearity. Chebyshev series is used for spatial discretisation and quadratic extrapolation is used for linearization. An incremental iterative approach is used for estimation of the critical load. Different combinations of simply supported, clamped and free boundary conditions are considered. The effects of plate aspect ratio, lamination scheme, number of layers and material properties on the critical loads are studied.  相似文献   

15.
An exact analytical solution based on the propagator matrix method and a semianalytical solution based on a higher-order mixed approach (displacement and stress interpolation) have been presented in this paper to evaluate the natural frequencies as well as the stress and displacement mode shapes of simply supported, cross-ply laminated and sandwich plates. Continuity of the transverse stresses and displacements has been maintained at the laminae interfaces. Results have been presented for orthotropic plates, symmetric as well as nonsymmetric cross-ply composite and sandwich laminates. Results from the propagator matrix agree well with the published results for frequencies as well as displacement and stress mode shapes. Furthermore, the frequencies and displacement and stress eigenvectors obtained from the proposed layerwise mixed method are in excellent agreement with those obtained by three-dimensional elasticity theory. Results obtained from the present equivalent single layer theory are in good agreement with those obtained from the displacement based higher order methods. The high accuracy of the present methods is further confirmed by comparing the response of a sandwich plate with significantly different layer properties for which the conventional displacement based formulations yield inaccurate solutions.  相似文献   

16.
Based on a novel split bi-layer shear deformable beam model capable of capturing the local deformation at the crack tip, the explicit closed-form solutions of bi-material interface fracture are presented in this paper. A recently developed novel shear deformable bi-layer beam theory is briefly reviewed, from which the deformation at the crack tip is explicitly derived. A new expression for the energy release rate is then obtained using the J integral, in which several new terms associated with the transverse shear force are present; this represents an improved solution compared to the one from the classical beam model. By exploiting the two concentrated crack tip forces, the general loadings acting at the crack tip are decomposed into two groups which produce only the mode I and mode II energy release rates, respectively; the total energy release rate is thus decomposed into the mode I and II components in a global sense. The stress intensity factor referred to as local decomposition is also obtained including the transverse shear effect. The difference between the global and local mode decompositions is clarified, and a simple relationship between them is provided. The effect of the existence of a thin layer of adhesive on the stress intensity factor is further studied by an asymptotic analysis. A simple and improved expression for the T stress, the nonsingular term of stress at the crack tip, is also given. The fracture parameters of several commonly used interface fracture specimens are summarized. The present fracture analysis including the transverse shear effect is in better agreement with finite element analyses and shows advantages and improved accuracy over the available classical solutions.  相似文献   

17.
Two analytical perturbation methods which give approximate solutions of postbuckling behavior of orthotropic simply supported plates are considered in this work: the method of Chandra and Raju and the method of Shen and Zhang. The reproduction of the algebraic developments of these methods by the Mathematica symbolic manipulator program has revealed that there are errors in the formulas included in the original paper by Chandra and Raju. After a revision and correction of these errors, the analytical results of both methods for a set of 23 orthotropic plates are compared, an excellent agreement being found for a wide range of values of geometrical and mechanical parameters in which many actual plates lie. A numerical simulation performed on a reduced sample of six plates using finite-element code ABAQUS has validated analytical results. The present work is intended as a first step in the investigation of the possibility of using reliable analytical formulas in the design of composite plates.  相似文献   

18.
The buckling and large deflection postbuckling behavior of plates laterally constrained by a tensionless foundation and subjected to in-plane compressive forces are investigated. A nonlinear finite-element formulation based on Marguerre’s nonlinear shallow shell theory, modified by Mindlin’s hypothesis, is employed to model the plate response. To overcome difficulties in solving the plate–foundation equilibrium equations together with the inequality constraints due to the unilateral contact condition, two different approaches are used: (1) the unilateral constraint is accounted for indirectly by a bilinear constitutive law and (2) the problem is formulated as a mathematical programming problem with inequality constraints from which a linear complementarity problem is derived and solved by the Lemke algorithm. To obtain the nonlinear equilibrium paths, the Newton–Raphson algorithm is used together with path-following strategies. Plate–foundation interaction leads to interesting deformation sequences, characterized by the variation of the contact and noncontact zones along the postbuckling path, leading sometimes to sudden changes in the deformation pattern. The results have a remarkable dependence on the plate aspect ratio, foundation stiffness, and buckling shape. The effects of geometric imperfections on the nonlinear response of the plate are also investigated. From these results, a number of insightful conclusions regarding the behavior of such plate–foundation systems are drawn.  相似文献   

19.
The effect of delamination on the flutter boundary of two‐dimensional laminated plates are investigated theoretically. Linear‐plate theory and qusai‐steady aerodynamic theory are employed. A simple beam‐plate‐theory model is developed to predict the flutter boundaries of delaminated homogeneous plates with simply supported ends. The effects of delamination position, size, and thickness on the flutter boundary are studied in detail. The results reveal that the presence of a delamination degraded the stiffness and the natural frequencies of the plate and thereby decreases the flutter boundary of the plate. However, for certain geometries the flutter boundaries were raised due to the flutter coalescence modes of the plate altered by the presence of a delamination in the plate.  相似文献   

20.
Analytical solutions to the geometrically nonlinear boundary value problems of laminated-composite plate undergoing moderately large deformations and subjected to various boundary conditions are presented in this paper. The nonlinear coupled partial differential equations are linearized using a quadratic extrapolation technique. The spatial discretization of the linear differential equations is carried out using fast-converging Chebyshev polynomials. A convergence study reveals that 8–10 terms of expansion of the function is sufficient to yield quite accurate results. The results for uniformly loaded, moderately thick laminated-composite plates with simply supported immovable edges, clamped immovable edges, free edges, and their combinations are presented. Some new results are presented, and it is observed that the present method is efficient and less expensive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号