首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

2.
在不同磨削深度、砂轮转速和进给速度组合下,研究微粉金刚石钎焊砂轮磨削氧化铝陶瓷过程的磨削力及工件的表面粗糙度的变化规律,并筛选出低磨削力和低工件表面粗糙度的加工工艺参数。试验结果表明:在微粉金刚石钎焊砂轮的磨削过程中,氧化铝陶瓷主要通过脆性断裂的方式去除;随着磨削深度、进给速度的增加,砂轮在进给方向和切深方向的力以及工件表面粗糙度都上升;随着砂轮转速的增加,进给方向和切深方向的力以及工件表面粗糙度都下降。试验获得的低磨削力和低工件表面粗糙度精密加工工艺参数分别为:磨削深度为1.0 μm,进给速度为12 mm/min,砂轮转速为24 000 r/min和磨削深度为1.0 μm,进给速度为1 mm/min,砂轮转速为20 000 r/min。低磨削力磨削时,微粉金刚石钎焊砂轮受到的X方向和Z方向的磨削力分别为0.15 N和0.72 N;精密加工后的氧化铝陶瓷的表面粗糙度值可达0.438 μm。   相似文献   

3.
金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析   总被引:1,自引:1,他引:0  
本文研究了树脂结合剂金刚石砂轮磨削铁氧体材料时,磨削深度、工件进给速度对磨削表面粗糙度和材料去除方式的影响规律,以此探索提高铁氧体磨削表面质量的有效途径。采用单因素法设计试验方案对铁氧体进行磨削,测量表面粗糙度数据并对其进行方差分析,对铁氧体磨削表面形貌进行观察。结果表明:随着磨削深度、工件进给速度的增加,表面粗糙度值升高,同时表面塑性痕迹减少,脆性断裂痕迹增加,且磨削深度对表面粗糙度的影响要比工件进给速度的更显著,因此,制定磨削工艺时,考虑到粗磨为了提高效率,降低表面损伤,优化得到磨削工艺为磨削深度5μm,工件进给速度10 m/min;精磨为了获得较低的表面粗糙度,采用磨削深度5μm、工件进给速度为5 m/min,可以提高磨削表面延展性。  相似文献   

4.
以横向进给磨削正交试验为基础,研究了磨削深度a_p、工件进给速度vw和横向重磨量C_r对40Cr钢磨削淬硬层深度的影响。结果表明:磨削深度a_p和工件进给速度v_w是影响磨削淬硬层深度的高度显著因素,其显著性大小依次为:磨削深度a_p工件进给速度v_w横向重磨量C_r。随着磨削深度的增加或工件进给速度的减小,磨削淬硬层深度相应增大。从提高磨削淬硬层深度及其均匀性的角度出发,本试验的最优磨削淬硬工艺参数组合:磨削深度ap为0.4 mm,工件进给速度v为0.2 m/min,横向重磨量C_r为1 mm。  相似文献   

5.
针对航天用SiC反射镜的低加工效率、表面质量差等难题,采用超声振动辅助磨削技术对其进行工艺实验研究。首先,通过选用树脂结合剂金刚石杯型砂轮并采取栅线式磨削研究不同工艺参数对磨削效率的影响关系。然后采取螺旋式磨削进行正交实验探究超声振幅、进给速度、砂轮转速、磨削深度对表面粗糙度的影响,并采用极差法分析探究各因素对工件磨削质量影响程度的大小。研究结果表明:当超声振幅5μm,进给速度80mm/min,砂轮转速6000r/min,磨削深度2μm时可获得表面粗糙度Ra97nm的已加工表面。  相似文献   

6.
张珂  赵国欢  孙健  韩涛  刘春光 《表面技术》2017,46(12):251-258
目的研究工程陶瓷磨削参数对磨削温度的影响,磨削参数包括金刚石砂轮线速度、磨削深度及工件进给速度。方法以金刚石砂轮平面磨削ZrO_2陶瓷为例,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程。同时通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度及工件进给速度的磨削组合参数实验,利用人工热电偶法对磨削温度进行测量,将实验结果与仿真结果进行对比分析。结果砂轮线速度由30 m/s增加到50 m/s,磨削深度由5μm增加到15μm,工件进给速度由1000 mm/min增加到3000 mm/min,磨削温度和磨削热分配比均增加,仿真结果与实验结果基本一致。结论磨削过程中磨削深度和工件进给速度对磨削温度的影响较大,随着金刚石砂轮线速度、磨削深度及工件进给速度的增加,磨削温度和磨削热分配比均增大。  相似文献   

7.
针对高温合金高效磨削过程中存在磨削烧伤问题,基于氧化铝空心球造孔与高温钎焊技术,研制了多层磨粒有序排布的多孔立方氮化硼(Cubic Boron Nitride,简称CBN)砂轮,开展了高效磨削GH4169镍基高温合金试验研究,分析了缓进给磨削中工件表面突发性烧伤特征,并提出采用添加石墨导流块来抑制工件烧伤策略。研究结果表明:添加石墨块导流后,缓进深切磨削砂轮最大材料去除率可提高3倍以上。当切深为0.2mm时,高速磨削时砂轮最大材料去除率可达20mm3/(mm·s)。当材料去除率为2mm3/(mm·s)时,随着磨削速度增大,磨削温度先下降后上升,当vs=80m/s时磨削温度最低。越过临界速度100m/s,磨削温度则呈下降趋势。  相似文献   

8.
对陶瓷结合剂CBN砂轮工作层配方和砂轮基体进行优化设计后,制备了磨船舶用曲轴用CBN砂轮,并进行了磨削试验研究,对磨削后的工件表面粗糙度和振纹进行了分析。实验结果表明:砂轮修整方法对砂轮的应用效果影响较为显著;砂轮修整的最佳工艺参数为:滚轮转速3000r/min,砂轮转速450r/min,纵向移动速度250mm/min,可得到的工件表面粗糙度值Ra≤0.32μm,且无振纹、烧伤。  相似文献   

9.
在氧化锆陶瓷磨削中为获得较高质量表面,采用单因素试验研究磨削深度、砂轮线速度、工件进给速度对氧化锆陶瓷精密磨削表面质量的影响规律及材料去除机理,通过超景深三维显微镜以及扫描电子显微镜,观察氧化锆陶瓷试件磨削后的表面形貌,最后用正交试验法进行优选并验证。结果表明:磨削表面的粗糙度随磨削深度、工件进给速度增大而增大,随砂轮线速度增大先减小、后增大。在磨削深度5 μm、砂轮线速度40 m/s、工件进给速度1 000 mm/min的优化组合条件下,磨削3组氧化锆陶瓷的平均表面粗糙度Ra为0.388 9 、0.417 0和0.403 7 μm。   相似文献   

10.
赵旭  巩亚东  张伟健  韩冰 《表面技术》2021,50(5):329-339
目的 针对高体积分数SiCp/Al加工表面缺陷复杂多样,提出其表面质量综合评价方法,研究磨削参数对SiCp/Al磨削表面质量的耦合影响规律,优化加工工艺.方法 基于SiCp/Al磨削加工表面缺陷,提出粗糙度综合指标SR为主、表面形貌为辅的表面质量综合评价方法,采用全因子试验方法分析低、高进给速度工况下主轴转速和磨削深度对表面质量的影响规律.借助Abaqus软件揭示SiCp/Al磨削表面形成机理,解释试验结果.结果 小切深(ap为5μm和20μm)时,粗糙度综合指标SR随着主轴转速ns的增加而先递减再增大;大切深(ap为40μm和80μm)时,SR随着ns的递增而递减或近似递减.低主轴转速(ns为2000 r/min和4000 r/min)时,SR随着磨削深度ap的增加(ap由5μm递增到80μm)而先增大再减小而后又增加;高主轴转速(ns为6000 r/min和8000 r/min)时,SR随着ap的增加而先增加再低进给量时减小或高进给量时增加.获得最佳磨削表面质量的最优磨削参数是:进给速度vf=50 mm/min,磨削深度ap=5μm,主轴转速ns=6000 r/min.兼顾磨削效率和表面质量的最优磨削参数是:vf=50 mm/min,ap=80μm,ns=8000 r/min.结论 表面质量综合评价方法的可靠性较高,主轴转速和磨削深度对表面质量的影响具有耦合性,减小磨削深度、采用适当主轴转速有助于改善表面质量.  相似文献   

11.
为了研究磨削工艺参数对SiC材料磨削质量的影响规律,利用DMG铣磨加工中心做了SiC陶瓷平面磨削工艺实验,分析研究了包括主轴转速、磨削深度、进给速度在内的磨削工艺参数对工件表面粗糙度的影响。结果表明:工件表面粗糙度随着主轴转速的增加而减小,随着磨削深度和进给速度的增加而增加。在粗糙度工艺试验的基础上,以表面粗糙度最小为目标优选一组磨削工艺参数,进行了小口径SiC陶瓷非球面磨削实验,获得了较低的表面粗糙度值(0.5150μm)和较小的面形精度误差(4.668μm)。  相似文献   

12.
本研究以不同系列SKH模具钢材作前置加工,再用精密砂轮磨削达Ra=10~15μm预留为微细加工部分,然后又以CBN砂轮精密研磨模具钢表面。探讨不同主轴转速、进给率及工件硬度之一些加工机制,包括CBN砂轮特性,磨削力、工件表面粗糙度及磨痕显微相片等变化。结果显示在较低硬度SKH51模具钢磨削时提高转速时明显改善表面粗糙度,但是对较高硬度SKH59模具钢磨削时转速的影响较不显著。此外,当较低磨削速度时,磨削力变化很大,造成工件表面粗糙质量变化相当显著。但当较高磨削速度时,磨削力变化几乎维持原水平,导致工件表面粗糙度质量改善趋于缓和,无法再进一步得到较精致表面粗糙度。  相似文献   

13.
目的 探究IC10单晶高温合金缓进磨削表面完整性的影响因素,提高关键零件的使用性能。方法 通过制备不同晶面、同一晶面不同晶向试块,采用刚玉砂轮在同一工艺参数下开展缓进磨削实验,研究各向异性对工件表面粗糙度、表面形貌、显微硬度和塑性变形层的影响。结果 在vs = 20 m/s,vw = 150 mm/min,ap = 0.2 mm条件下,不同晶面磨削后的平均表面粗糙度Ra为0.3~0.4 μm,其中(001)晶面加工后的平均表面粗糙度Ra为0.32 μm,加工纹理均匀且轮廓起伏变化程度最小,(011)晶面的平均表面粗糙度Ra为0.35 μm,(111)晶面的平均表面粗糙度Ra为0.39 μm,其表面出现了深的犁沟及凹坑等现象;不同晶面加工后工件表面均发生了硬化,硬化程度由强到弱依次为(001)、(011)、(111)晶面;不同晶面磨削后表面存在微米级厚度的塑性变形层,其中(111)晶面塑性变形层最厚,厚度为3.6 μm,(011)和(001)晶面的厚度分别为2.8、2 μm。(001)晶面在不同晶向磨削后工件的表面粗糙度、表面形貌、显微硬度和塑性变形层则无明显的规律性变化。结论 IC10单晶高温合金各向异性对磨削后工件表面完整性具有一定影响,不同晶面由于塑性变形难度存在差异,导致磨削后其表面完整性存在规律性变化,其中(001)晶面加工后的表面粗糙度最低,加工纹理最平整,显微硬度最大,塑性变形层厚度最小。由于显微组织呈现随机分布的圆形、方形、三角形等形态,且不规则,导致同一晶面不同晶向对磨削后工件表面完整性的影响无明显规律。  相似文献   

14.
基于大口径非球面镜交叉磨削加工方式,分析主轴偏心振动幅值和磨削工艺参数对其表面波纹度的影响,建立磨削表面波纹度形成机理三维模型。通过仿真试验分析磨削表面三维波纹度与加工工艺参数的关系,提出特定主轴最佳磨削工艺参数匹配方案。磨削试验结果表明:建立的三维表面波纹度模型与磨削工艺参数关系合理,最优的磨削工艺参数匹配方案为砂轮转速1 600~1 800 r/min,X轴进给速度1~3 mm/r,工件旋转速度20 r/min。   相似文献   

15.
采用热丝CVD法制备纳米金刚石薄膜涂层刀具,利用场发射扫描电子显微镜表征薄膜的表面形貌,并用已制备的CVD金刚石涂层刀具,在无润滑干切条件下高速铣削7075铝合金工件,对其精铣工艺参数进行单因素及正交试验,探索精铣后工件的表面粗糙度变化规律并进行工艺参数优化。结果表明:随着主轴转速n从5000 r/min提高到8000 r/min, 工件平均表面粗糙度在逐级缓慢降低;当进给速度vf在1000~7000 mm/min范围内,随着vf提高工件平均表面粗糙度快速增大,在vf为7000 mm/min时,其值达1.790 μm;当轴向切削深度ap在0.1~0.4 mm范围内,随着ap提高,工件平均表面粗糙度逐步增大,但ap在0.2 mm之后其增大趋势变缓。对7075铝合金工件精铣表面粗糙度影响最大的是vf,其次为n,ap的影响最弱;其精铣的最优参数组合是ap=0.2 mm、vf=1 000 mm/min、n=8 000 r/min,精铣后的表面粗糙度平均值为0.516 μm。选用纳米金刚石薄膜涂层刀具精铣7075铝合金时,为得到较低的表面粗糙度,应选择高主轴转速、低进给速度、合适的轴向切削深度。   相似文献   

16.
在平面磨床上采用"纵向往复进给+横向间歇进给怕勺方式对40Cr钢进行大尺寸平面磨削淬硬正交试验,研究了横向截面上软化带宽度与各因素之间的变化规律。结果表明:随磨削深度的增大或工件进给速度的减小,软化带宽度增大,而随着重磨区宽度的增大,软化带宽度则先减小后增大;各因素对软化带宽度的影响顺序为工件进给速度v_w重磨量C_r磨削深度a_p;最优磨削淬硬参数组合为V_w=0.8 m/min,C_r=1mm,a_p=0.1mm。  相似文献   

17.
齿轮钢30CrMnTi磨削强化试验   总被引:1,自引:0,他引:1  
30CrMnTi钢广泛应用于齿轮的生产制造中,为提高齿轮的抗疲劳性能及探讨磨削工艺参数对其表面强化的影响,开展了齿轮钢30CrMnTi的磨削试验,分析了磨削速度和磨削深度对磨削表面强化层显微组织、强化层深度、表面显微硬度和强化层残余应力的影响规律。结果表明,齿轮钢30CrMnTi磨削加工后得到一定强化层,表面显微组织为针状马氏体、碳化物和少量残余奥氏体,且强化层马氏体组织由磨削表面到心部呈"细—较粗"的变化趋势,硬度先增大后减小,强化层深度随磨削深度或磨削速度的增大而增加,磨削后表面显微硬度提高2%~13%,随磨削速度降低或磨削深度增大而增大。磨削过程对残余应力的影响在表面表现为拉应力,沿层深向内逐渐转化为压应力。磨削表面残余压应力的值随磨削速度或磨削深度的增大而降低。通过合理的磨削参数可实现齿轮钢30CrMnTi的表面磨削强化。  相似文献   

18.
为了考查高速磨削工艺参数对K9玻璃表面粗糙度的影响,为K9玻璃的高速磨削工艺改进提供参考依据,并通过高速磨削工艺的改进降低K9玻璃的加工成本。文章采用高温钎焊工艺制作磨粒有序排布的单层钎焊金刚石砂轮,经过砂轮修整,采用拟定工艺参数对K9玻璃进行高速磨削实验,通过显微镜观察考查工件表面形态随工艺参数的变化,通过K9玻璃表面粗糙度的测量考查工艺参数的影响规律。研究表明随着磨削速度的增加磨削表面的较大缺陷明显减小,表面粗糙度也有较大的改善,表面纹理的连续性加强,去除模式趋向于延性域方向变化。粗粒度砂轮磨削K9玻璃时欲获得较好的表面质量,工艺参数选择应取工件速度小于1m/min,磨削速度大于70m/s,切深5μm左右。  相似文献   

19.
针对GT35动压马达轴精密加工精度难以保证、效率低、成本高的难题,开展马达轴精密磨削加工工艺研究。通过开展不同结合剂,不同粒度、浓度的金刚石砂轮磨削对比试验,研究不同砂轮参数对工件形状精度、表面质量、比磨削能等的影响规律,设计超硬磨料砂轮;通过正交试验,确定影响轴精密磨削表面粗糙度、圆度、圆柱度的最优工艺参数;采用最优磨削参数对20件马达轴开展了磨削加工验证试验。研究得到:当工件转速304 r/min、进给速度0.003m/min、进给量1μm时,获得最优的马达轴圆度0.11μm、圆柱度0.34μm、粗糙度Ra0.041μm的合格工件。  相似文献   

20.
针对航空发动机常用材料钛合金TC17,采用白刚玉砂轮与微晶刚玉砂轮开展磨削试验,研究微晶刚玉砂轮对工件表面质量和磨削力大小的影响规律。试验结果表明:微晶刚玉砂轮磨削后工件表面质量更好,表面粗糙度值降低0.14 μm,磨削力降低10%左右。针对微晶刚玉砂轮进行磨削参数对磨削力影响规律的单因素试验,从磨削力角度分析微晶刚玉砂轮磨削钛合金的合理工艺参数。综合磨削力与加工效率因素,确定磨削钛合金TC17的合理参数为:砂轮线速度vs=27 m/s、磨削深度ap=0.01 mm、工件进给速度vw=12 m/min;对磨削力试验数据进行多元线性回归分析,建立了法向磨削力和切向磨削力的回归模型。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号