首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer’s disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer’s disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer’s disease-related proteins and genes will provide the most important therapeutic development goals to date.  相似文献   

2.
Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, is a key regulator of the brain’s responses to injury and inflammation. Alzheimer’s disease (AD), the most common neurodegenerative disorder, involves inflammatory processes in the brain in addition to the hallmarks, amyloid-β (Aβ) plaques and neurofibrillary tangles. Recently, we have shown that T-helper (Th) 17 cells, a subpopulation of CD4+ T-cells with high proinflammation, also participate in the brain inflammatory process of AD. However, it is poorly known whether TGF-β1 ameliorates the lymphocyte-mediated neuroinflammation and, thereby, alleviates neurodegeneration in AD. Herein, we administered TGF-β1 via the intracerebroventricle (ICV) in AD model rats, by Aβ1–42 injection in both sides of the hippocampus, to show the neuroprotection of TGF-β1. The TGF-β1 administration after the Aβ1–42 injection ameliorated cognitive deficit and neuronal loss and apoptosis, reduced amyloid precursor protein (APP) expression, elevated protein phosphatase (PP)2A expression, attenuated glial activation and alleviated the imbalance of the pro-inflammatory/anti-inflammatory responses of T-lymphocytes, compared to the Aβ1–42 injection alone. These findings demonstrate that TGF-β1 provides protection against AD neurodegeneration and suggest that the TGF-β1 neuroprotection is implemented by the alleviation of glial and T-cell-mediated neuroinflammation.  相似文献   

3.
4.
5.
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.  相似文献   

6.
Quercetin 3-O-β-D-glucuronide (Q-3-G), the glucuronide conjugate of quercetin, has been reported as having anti-inflammatory properties in the lipopolysaccharide-stimulated macrophages, as well as anticancer and antioxidant properties. Unlike quercetin, which has been extensively described to possess a wide range of pharmacological activities including skin protective effects, the pharmacological benefits and mechanisms Q-3-G in the skin remained to be elucidated. This study focused on characterizing the skin protective properties, including anti-inflammatory and antioxidant properties, of Q-3-G against UVB-induced or H2O2-induced oxidative stress, the hydration effects, and antimelanogenesis activities using human keratinocytes (HaCaT) and melanoma (B16F10) cells. Q-3-G down-regulated the expression of the pro-inflammatory gene and cytokine such as cyclooxygenase-2 (COX-2) and tumor necrosis factor (TNF)-α in H2O2 or UVB-irradiated HaCaT cells. We also showed that Q-3-G exhibits an antioxidant effect using free radical scavenging assays, flow cytometry, and an increased expression of nuclear factor erythroid 2- related factor 2 (Nrf2). Q-3-G reduced melanin production in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. The hydration effects and mechanisms of Q-3-G were examined by evaluating the moisturizing factor-related genes, such as transglutaminase-1 (TGM-1), filaggrin (FLG), and hyaluronic acid synthase (HAS)-1. In addition, Q-3-G increased the phosphorylation of c-Jun, Jun N-terminal kinase (JNK), Mitogen-activated protein kinase (MAPK) kinase 4 (MKK4), and TAK1, involved in the MAPKs/AP-1 pathway, and the phosphorylation of IκBα, IκB kinase (IKK)-α, Akt, and Src, involved in the NF-κB pathway. Taken together, we have demonstrated that Q-3-G exerts anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis properties in human keratinocytes and melanoma cells through NF-κB and AP-1 pathways.  相似文献   

7.
Epidemiological studies support a connection between the two common disorders, type-2 diabetes and Alzheimer’s disease. Both conditions have local amyloid formation in their pathogenesis, and cross-seeding between islet amyloid polypeptide (IAPP) and amyloid β (Aβ) could constitute the link. The bimolecular fluorescence complementation (BiFC) assay was used to investigate the occurrence of heterologous interactions between IAPP and Aβ and to compare the potential toxic effects of IAPP/Aβ, IAPP/IAPP, and Aβ/Aβ expression in living cells. Microscopy was used to confirm the fluorescence and determine the lysosomal, mitochondrial areas and mitochondrial membrane potential, and a FACS analysis was used to determine ROS production and the role for autophagy. Drosophila melanogaster expressing IAPP and Aβ was used to study their co-deposition and effects on longevity. We showed that the co-expression of IAPP and Aβ resulted in fluorophore reconstitution to the same extent as determined for homologous IAPP/IAPP or Aβ/Aβ expression. The BiFC(+)/BiFC(−) ratio of lysosomal area calculations increased in transfected cells independent of the vector combinations, while only Aβ/Aβ expression increased mitochondrial membrane potential. Expression combinations containing Aβ were necessary for the formation of a congophilic amyloid. In Drosophila melanogaster expressing IAPP/Aβ, co-deposition of the amyloid-forming peptides caused reduced longevity. The BiFC results confirmed a heterologous interaction between IAPP and Aβ, while co-deposits in the brain of Drosophila suggest mixed amyloid aggregates.  相似文献   

8.
9.
PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.  相似文献   

10.
Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm—acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). Methods: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. Results: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, βarrestin1, βarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased βarrestin1 and ERK1/2. KET treatment induced the upregulation of βarrestin1. Joint administration of these drugs had no effect on the βarrestin1 level. Conclusion: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.  相似文献   

11.
12.
miR-155 plays a crucial role in proinflammatory activation. This study was carried out to assess the association of abnormal expression of miR-155 in peripheral blood of patients with Rheumatoid arthritis with the expression of TNF-α and IL-1β. Release of TNF-α and IL-1β, and expression of miR-155 were determined in RA peripheral blood or peripheral blood macrophages, followed by correlation analysis of the cytokines release and miR-155 expression. Furthermore, in vitro studies indicate that miR-155 inhibited the expression of SOCS1. Our results suggest that there is a correlation between the high-level expression of miR-155 and the enhanced expression of TNF-α and IL-1β. miR-155 targets and suppresses the expression of SOCS1, and the decrease of SOCS1 may lead to the upregulation of TNF-α and IL-1β.  相似文献   

13.
Bacterial β-glucans are exopolysaccharides (EPSs), which can protect bacteria or cooperate in biofilm formation or in bacterial cell adhesion. Pediococcus parvulus 2.6 is a lactic acid bacterium that produces an O-2-substituted (1-3)-β-D-glucan. The structural similarity of this EPS to active compounds such as laminarin, together with its ability to modulate the immune system and to adhere in vitro to human enterocytes, led us to investigate, in comparison with laminarin, its potential as an immunomodulator of in vitro co-cultured Caco-2 and PMA-THP-1 cells. O-2-substituted (1-3)-β-D-glucan synthesized by the GTF glycosyl transferase of Pediococcus parvulus 2.6 or that by Lactococcus lactis NZ9000[pGTF] were purified and used in this study. The XTT tests revealed that all β-glucans were non-toxic for both cell lines and activated PMA-THP-1 cells’ metabolisms. The O-2-substituted (1-3)-β-D-glucan modulated production and expression of IL-8 and the IL-10 in Caco-2 and PMA-THP-1 cells. Laminarin also modulated cytokine production by diminishing TNF-α in Caco-2 cells and IL-8 in PMA-THP-1. All these features could be considered with the aim to produce function foods, supplemented with laminarin or with another novel β-glucan-producing strain, in order to ameliorate an individual’s immune system response toward pathogens or to control mild side effects in remission patients affected by inflammatory bowel diseases.  相似文献   

14.
Isoliquiritigenin (ILTG) possesses many pharmacological properties. However, its poor solubility and stability in water hinders its wide applications. The solubility of bioactive compounds can often be enhanced through preparation and delivery of various cyclodextrin (CD) inclusion complexes. The 6-O-α-d-maltosyl-β-CD (G2-β-CD), as one of the newest developments of CDs, has high aqueous solubility and low toxicity, especially stable inclusion characteristics with bioactive compounds. In this work, we for the first time construct and characterize the supermolecular structure of ILTG/G2-β-CD by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffractometry (XRD). The solubility of ILTG in water at 25 °C rises from 0.003 to 0.717 mg/mL by the encapsulation with G2-β-CD. Our experimental observations on the presence of the ILTG/G2-β-CD inclusion complex are further supported by the ONIOM(our Own N-layer Integrated Orbital molecular Mechanics)-based QM/MM (Quantum Mechanics/Molecular Mechanics) calculations, typically substantiating these supermolecular characteristics, such as detailed structural assignments, preferred binding orientations, selectivity, solvent effects, interaction energies and forces of the ILTG/G2-β-CD inclusion complex. Our results have elucidated how ILTG interacts with G2-β-CD, demonstrating the primary host-guest interactions between ILTG and G2-β-CD, characterized by hydrogen bonds, hydrophobic interactions, electrostatic forces, and conformational effects, are favored for the formation of the ILTG/G2-β-CD inclusion.  相似文献   

15.
Epidemiological studies have implied that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows the development and progression of Alzheimer’s disease (AD). However, the underlying mechanisms are notably understudied. Using a chimeric mouse/human amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) (APP/PS1) expressing transgenic (Tg) mice and neuroblastoma (N) 2a cells as in vivo and in vitro models, we revealed the mechanisms of indomethacin in ameliorating the cognitive decline of AD. By screening AD-associated genes, we observed that a marked increase in the expression of α2-macroglobulin (A2M) was markedly induced after treatment with indomethacin. Mechanistically, upregulation of A2M was caused by the inhibition of cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), which are responsible for the synthesis of prostaglandin (PG)H2 and PGD2, respectively. The reduction in PGD2 levels induced by indomethacin alleviated the suppression of A2M expression through a PGD2 receptor 2 (CRTH2)-dependent mechanism. Highly activated A2M not only disrupted the production and aggregation of β-amyloid protein (Aβ) but also induced Aβ efflux from the brain. More interestingly, indomethacin decreased the degradation of the A2M receptor, low-density lipoprotein receptor-related protein 1 (LRP1), which facilitated the brain efflux of Aβ. Through the aforementioned mechanisms, indomethacin ameliorated cognitive decline in APP/PS1 Tg mice by decreasing Aβ production and clearing Aβ from the brains of AD mice.  相似文献   

16.
The small molecule, meso-tetra(α,α,α,α-o-phenylacetamidophenyl) porphyrin (Mr1147.0) was used as complete antigen to elicit MAb through the immunization and cell fusion techniques. The MAb 1F2 obtained was demonstrated to be very pure by MALDI/TOFMS. The subtype of MAb 1F2 is IgG2a, which has a relative molecular weight of 156,678.8 Da.No significant change in the intensity of absorption peaks in UV and CD spectra was observed over a pH range between 6 and 12. The high stability of the abzyme and the tight binding between Fe porphyrin and antibody were also demonstrated. Vmax, Km, κcat, κcat/Km for abzyme are 5.18 × 10−8 Ms−1, 1.50 × 10−8 M, 0.518 s−1, 3.45 × 107 M−1s−1, respectively. The data obtained indicate that catalytic antibody has high catalytic activity. The chloroperoxidase activity of MAb 1F2-Fe porphyrin complex is stable from 10 °C to 60 °C.  相似文献   

17.
To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant β-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-β-D-glucan recognition protein (S-BGRP) and a (1→6)-β-glucanase mutant protein were prepared and tested for the binding of (1→6)-branched (1→3)-β-D-glucan from fungi. S-BGRP and (1→6)-β-glucanase mutant proteins reacted with β-glucan from Candida and Aspergillus spp. Although LAL cross-reacted with plant-derived β-glucans, the new detection system using the SSMC method showed low sensitivity to plant (1→3)-β-D-glucan, which significantly improved the appearance of false positives, a recognized problem with the LAL method. Measurement of β-glucan levels by the SSMC method using recombinant β-glucan-binding proteins may be useful for the diagnosis of fungal infections. This study shows that this detection system could be a new alternative diagnostic method to the LAL method.  相似文献   

18.
19.
Alzheimer’s disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of β-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of β-sheet structures in different monogenic and bigenic cellular models of Alzheimer’s disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-β, α-synuclein) and (amyloid-β, Tau) neuron-like cells display changes in β-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer’s disease.  相似文献   

20.
Early-onset Alzheimer’s disease (EOAD) is characterized by the presence of neurological symptoms in patients with Alzheimer’s disease (AD) before 65 years of age. Mutations in pathological genes, including amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2), were associated with EOAD. Seventy-six mutations in PSEN2 have been found around the world, which could affect the activity of γ-secretase in amyloid beta processing. Here, a heterozygous PSEN2 point mutation from G to A nucleotide change at position 166 (codon 56; c.166G>A, Gly56Ser) was identified in a 64-year-old Korean female with AD with progressive cognitive memory impairment for the 4 years prior to the hospital visit. Hippocampal atrophy was observed from magnetic resonance imaging-based neuroimaging analyses. Temporal and parietal cortex hypometabolisms were identified using fluorodeoxyglucose positron emission tomography. This mutation was at the N-terminal portion of the presenilin 2 protein on the cytosolic side. Therefore, the serine substitution may have promoted AD pathogenesis by perturbing to the mutation region through altered phosphorylation of presenilin. In silico analysis revealed that the mutation altered protein bulkiness with increased hydrophilicity and reduced flexibility of the mutated region of the protein. Structural changes were likely caused by intramolecular interactions between serine and other residues, which may have affected APP processing. The functional study will clarify the pathogenicity of the mutation in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号