首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm. Rats were divided into six groups (eight rats each): non-treated control for 1 and 3 days of the experiments (1C and 3C, respectively), 1 and 3 days of hindlimb suspension (HS) with placebo (1H and 3H, respectively), and 1 and 3 days of HS with PANX1 inhibitor probenecid (PRB; 1HP and 3HP, respectively). When compared with 3C group there was a significant increase in ATP in soleus muscle of 3H and 3HP groups (32 and 51%, respectively, p < 0.05). When compared with 3H group, 3HP group had: (1) lower mRNA expression of E3 ligases MuRF1 and MAFbx (by 50 and 38% respectively, p < 0.05) and MYOG (by 34%, p < 0.05); (2) higher phosphorylation of p70S6k and p90RSK (by 51 and 35% respectively, p < 0.05); (3) lower levels of phosphorylated eEF2 (by 157%, p < 0.05); (4) higher level of phosphorylated GSK3β (by 189%, p < 0.05). In conclusion, PANX1 ATP-permeable channels are involved in the regulation of muscle atrophic processes by modulating expression of E3 ligases, and protein translation and elongation processes during unloading.  相似文献   

2.
Objective: The protein microfibril-associated glycoprotein (MAGP)-1 constitutes a crucial extracellular matrix protein. We aimed to determine its impact on visceral adipose tissue (VAT) remodelling during obesity-associated colon cancer (CC). Methods: Samples obtained from 79 subjects (29 normoponderal (NP) (17 with CC) and 50 patients with obesity (OB) (19 with CC)) were used in the study. Circulating concentrations of MAGP-1 and its gene expression levels (MFAP2) in VAT were analysed. The impact of inflammation-related factors and adipocyte-conditioned media (ACM) on MFAP2 mRNA levels in colon adenocarcinoma HT-29 cells were further analysed. The effects of MAGP-1 in the expression of genes involved in the extracellular matrix (ECM) remodelling and tumorigenesis in HT-29 cells was also explored. Results: Obesity (p < 0.01) and CC (p < 0.001) significantly decreased MFAP2 gene expression levels in VAT whereas an opposite trend in TGFB1 mRNA levels was observed. Increased mRNA levels of MFAP2 after the stimulation of HT-29 cells with lipopolysaccharide (LPS) (p < 0.01) and interleukin (IL)-4 (p < 0.01) together with a downregulation (p < 0.05) after hypoxia mimicked by CoCl2 treatment was observed. MAGP-1 treatment significantly enhanced the mRNA levels of the ECM-remodelling genes collagen type 6 α3 chain (COL6A3) (p < 0.05), decorin (DCN) (p < 0.01), osteopontin (SPP1) (p < 0.05) and TGFB1 (p < 0.05). Furthermore, MAGP-1 significantly reduced (p < 0.05) the gene expression levels of prostaglandin-endoperoxide synthase 2 (COX2/PTGS2), a key gene controlling cell proliferation, growth and adhesion in CC. Interestingly, a significant decrease (p < 0.01) in the mRNA levels of MFAP2 in HT-29 cells preincubated with ACM from volunteers with obesity compared with control media was observed. Conclusion: The decreased levels of MAGP-1 in patients with obesity and CC together with its capacity to modulate key genes involved in ECM remodelling and tumorigenesis suggest MAGP-1 as a link between AT excess and obesity-associated CC development.  相似文献   

3.
4.
Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: −4.1 ± 0.8%, LF: −1.9 ± 0.8%, sham: −1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: −61.5 ± 15.2%, p < 0.01; LF: −31.8 ± 17.1%, p < 0.05; sham: −35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (−77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: −54.9%, sham: −15.1%; p > 0.05) and Lactobacillus (LF: −26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.  相似文献   

5.
(1) Adipsin is an adipokine that may link increased fat mass and adipose tissue dysfunction to obesity-related cardiometabolic diseases. Here, we investigated whether adipsin serum concentrations and adipose tissue (AT) adipsin mRNA expression are related to parameters of AT function, obesity and type 2 diabetes (T2D). (2) Methods: A cohort of 637 individuals with a wide range of age and body weight (Age: 18–85 years; BMI: 19–70 kg/m2) with (n = 237) or without (n = 400) T2D was analyzed for serum adipsin concentrations by ELISA and visceral (VAT) and subcutaneous (SAT) adipsin mRNA expression by RT-PCR. (3) Results: Adipsin serum concentrations were significantly higher in patients with T2D compared to normoglycemic individuals. We found significant positive univariate relationships of adipsin serum concentrations with age (r = 0.282, p < 0.001), body weight (r = 0.264, p < 0.001), fasting plasma glucose (r = 0.136, p = 0.006) and leptin serum concentrations (r = 0.362, p < 0.001). Neither VAT nor SAT adipsin mRNA expression correlated with adipsin serum concentrations after adjusting for age, sex and BMI. Independent of T2D status, we found significantly higher adipsin expression in SAT compared to VAT (4) Conclusions: Our data suggest that adipsin serum concentrations are strongly related to obesity and age. However, neither circulating adipsin nor adipsin AT expression reflects parameters of impaired glucose or lipid metabolism in patients with obesity with or without T2D.  相似文献   

6.
Knee arthrofibrosis is a common complication of knee surgery, caused by excessive scar tissue, which results in functional disability. However, no curative treatment has been established. E8002 is an anti-adhesion material that contains L-ascorbic acid, an antioxidant. We aimed to evaluate the efficacy of E8002 for the prevention of knee arthrofibrosis in a rat model, comprising injury to the surface of the femur and quadriceps muscle 1 cm proximal to the patella. Sixteen male, 8-week-old Sprague Dawley rats were studied: in the Adhesion group, haemorrhagic injury was induced to the quadriceps and bone, and in the E8002 group, an adhesion-preventing film was implanted between the quadriceps and femur after injury. Six weeks following injury, the restriction of knee flexion owing to fibrotic scarring had not worsened in the E8002 group but had worsened in the Adhesion group. The area of fibrotic scarring was smaller in the E8002 group than in the Adhesion group (p < 0.05). In addition, the numbers of fibroblasts (p < 0.05) and myofibroblasts (p < 0.01) in the fibrotic scar were lower in the E8002 group. Thus, E8002 reduces myofibroblast proliferation and fibrotic scar formation and improves the range of motion of the joint in a model of knee injury.  相似文献   

7.
8.
(1) Background: The endothelial glycocalyx is a primary target during the early phase of sepsis. We previously reported a newly developed recombinant non-fucosylated antithrombin has protective effects in vitro. We further evaluated the effects of this recombinant antithrombin on the glycocalyx damage in an animal model of sepsis. (2) Methods: Following endotoxin injection, in Wistar rats, circulating levels of hyaluronan, syndecan-1 and other biomarkers were evaluated in low-dose or high-dose recombinant antithrombin-treated animals and a control group (n = 7 per group). Leukocyte adhesion and blood flow were evaluated with intravital microscopy. The glycocalyx was also examined using side-stream dark-field imaging. (3) Results: The activation of coagulation was inhibited by recombinant antithrombin, leukocyte adhesion was significantly decreased, and flow was better maintained in the high-dose group (both p < 0.05). Circulating levels of syndecan-1 (p < 0.01, high-dose group) and hyaluronan (p < 0.05, low-dose group; p < 0.01, high-dose group) were significantly reduced by recombinant antithrombin treatment. Increases in lactate and decreases in albumin levels were significantly attenuated in the high-dose group (p < 0.05, respectively). The glycocalyx thickness was reduced over time in control animals, but the derangement was attenuated and microvascular perfusion was better maintained in the high-dose group recombinant antithrombin group (p < 0.05). (4) Conclusions: Recombinant antithrombin maintained vascular integrity and the microcirculation by preserving the glycocalyx in this sepsis model, effects that were more prominent with high-dose therapy.  相似文献   

9.
10.
We assessed the effect of antioxidant therapy using the Food and Drug Administration-approved respiratory drug N-acetylcysteine (NAC) or sulforaphane (SFN) as monotherapies or duotherapy in vitro in neuron-BV2 microglial co-cultures and validated the results in a lateral fluid-percussion model of TBI in rats. As in vitro measures, we assessed neuronal viability by microtubule-associated-protein 2 immunostaining, neuroinflammation by monitoring tumor necrosis factor (TNF) levels, and neurotoxicity by measuring nitrite levels. In vitro, duotherapy with NAC and SFN reduced nitrite levels to 40% (p < 0.001) and neuroinflammation to –29% (p < 0.001) compared with untreated culture. The treatment also improved neuronal viability up to 72% of that in a positive control (p < 0.001). The effect of NAC was negligible, however, compared with SFN. In vivo, antioxidant duotherapy slightly improved performance in the beam walking test. Interestingly, duotherapy treatment decreased the plasma interleukin-6 and TNF levels in sham-operated controls (p < 0.05). After TBI, no treatment effect on HMGB1 or plasma cytokine levels was detected. Also, no treatment effects on the composite neuroscore or cortical lesion area were detected. The robust favorable effect of duotherapy on neuroprotection, neuroinflammation, and oxidative stress in neuron-BV2 microglial co-cultures translated to modest favorable in vivo effects in a severe TBI model.  相似文献   

11.
Aims: The aim of the present study is to investigate the differential expression of CD44, CD47 and c-met in ovarian clear cell carcinoma (OCCC), the correlation in their expression and their relationship with the biological behavior of OCCC. Methods: We used immunohistochemistry to examine the expression of CD44, CD47 and c-met in OCCC (86 cases) and investigated the effects of the expression and interaction of these molecules on the development of OCCC. Results: CD44, CD47 and c-met expression was significantly high in OCCC. Expression of CD44 and CD47 correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), and expression of c-met correlated with chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). The surgical stage, CD44, CD47 and c-met expression were independent risk factors for OCCC prognosis (all p < 0.05). Patients with low levels of CD44, CD47 and c-met showed better survival than those with high levels (all p < 0.05). There was a positive correlation between CD44 (or CD47) and c-met, as well as between CD44 and CD47 (the Spearman correlation coefficient rs was 0.783, 0.776 and 0.835, respectively, all p < 0.01). Additionally, pairwise correlation analysis of these three markers shows that the high expression of CD44/CD47, CD44/c-met and CD47/c-met were correlated with patient surgical stage, chemotherapy resistance and prognosis (all p < 0.05), but did not correlate with lymph node metastasis (all p > 0.05). Conclusions: Expression of CD44, CD47 and c-met was upregulated in OCCC and pairwise correlation. CD44, CD47 and c-met may have synergistic effects on the development of OCCC and are prognostic factors for ovarian cancer.  相似文献   

12.
The objectives of this study were to reveal molecular structures of protein among different types of the dried distillers grains with solubles (100% wheat DDGS (WDDGS); DDGS blend1 (BDDGS1, corn to wheat ratio 30:70%); DDGS blend2 (BDDGS2, corn to wheat ratio 50:50 percent)) and different batches within DDGS type using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Compared with BDDGS1 and BDDGS2, wheat DDGS had higher (p < 0.05) peak area intensities of protein amide I and II and amide I to II intensity ratio. Increasing the corn to wheat ratio form 30:70 to 50:50 in the blend DDGS did not affect amide I and II area intensities and their ratio. Amide I to II peak intensity ratio differed (p < 0.05) among the different batches within WDDGS and BDDGS1. Compared with both blend DDGS types, WDDGS had higher α-helix and β-sheet ratio (p < 0.05), while α-helix to β-sheet ratio was similar among the three DDGS types. The α-helix to β-sheet ratio differed significantly among batches within WDDGS. Principal component analysis (PCA) revealed that protein molecular structures in WDDGS differed from those of BDDGS1 and between different batches within BDDGS1 and BDDGS2. The α-helix to β-sheet ratios of protein in all DDGS types had an influence on availability of protein at the ruminal level as well as at the intestinal level. The α-helix to β-sheet ratio was positively correlated to rumen undegraded protein (r = 0.41, p < 0.05) and unavailable protein (PC; r = 0.59, p < 0.05).  相似文献   

13.
Although the heterogeneity of high-density lipoprotein-cholesterol (HDL-c) composition is associated with atherosclerotic cardiovascular risk, the link between electronegative subfractions of HDL-c and atherosclerosis in rheumatoid arthritis (RA) remains unknown. We examined the association of the percentage of the most electronegative subfraction of HDL-c (H5%) and RA-related atherosclerosis. Using anion-exchange purification/fast-protein liquid chromatography, we demonstrated significantly higher H5% in patients (median, 7.2%) than HC (2.8%, p < 0.005). Multivariable regression analysis revealed H5% as a significant predictor for subclinical atherosclerosis. We subsequently explored atherogenic role of H5 using cell-based assay. The results showed significantly higher levels of IL-1β and IL-8 mRNA in H5-treated (mean ± SD, 4.45 ± 1.22 folds, 6.02 ± 1.43-folds, respectively) than H1-treated monocytes (0.89 ± 0.18-folds, 1.03 ± 0.26-folds, respectively, both p < 0.001). In macrophages, H5 upregulated the mRNA and protein expression of IL-1β and IL-8 in a dose-dependent manner, and their expression levels were significantly higher than H1-treated macrophages (all p < 0.001). H5 induced more foam cell formation compared with H1-treated macrophages (p < 0.005). In addition, H5 has significantly lower cholesterol efflux capacity than H1 (p < 0.005). The results of nanoLC-MS/MS approach reveal that the best discriminator between high-H5% and normal-H5% is Apo(a), the main constituent of Lp(a). Moreover, Lp(a) level is a significant predictor for high-H5%. These observations suggest that H5 is involved in RA-related atherosclerosis.  相似文献   

14.
Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model.  相似文献   

15.
Recently, senescence marker protein-30 (SMP30) knockout (KO) mice have been reported to be susceptible to apoptosis, however, the role of SMP30 has not been characterized in the small intestine. The aim of the present study is to investigate the role of SMP30 in the process of spontaneous and γ-radiation-induced apoptosis in mouse small intestine. Eight-week-old male wild-type (WT) mice and SMP30 KO mice were examined after exposure to 0, 1, 3, 5, and 9 Gy of γ-radiation. Apoptosis in the crypts of the small intestine increased in the 0 to 5 Gy radiated SMP30 KO and WT mice. Radiation-induced apoptosis and the BAX/Bcl-2 ratio in the SMP30 KO mice were significantly increased in comparison to each identically treated group of WT mice (p < 0.05). The levels of spontaneous apoptosis in both WT and KO mice were similar (p > 0.05), indicating that increased apoptosis of crypt cells of SMP30 KO by irradiation can be associated with SMP30 depletion. These results suggested that SMP30 might be involved in overriding the apoptotic homeostatic mechanism in response to DNA damage.  相似文献   

16.
17.
Background: Toll-like receptor (TLR) agonists are key immunomodulatory factors that can markedly ameliorate or exacerbate hypoxic–ischemic brain injury. We recently demonstrated that central infusion of the TLR7 agonist Gardiquimod (GDQ) following asphyxia was highly neuroprotective after 3 days but not 7 days of recovery. We hypothesize that this apparent transient neuroprotection is associated with modulation of seizure-genic processes and hemodynamic control. Methods: Fetuses received sham asphyxia or asphyxia induced by umbilical cord occlusion (20.9 ± 0.5 min) and were monitored continuously for 7 days. GDQ 3.34 mg or vehicle were infused intracerebroventricularly from 1 to 4 h after asphyxia. Results: GDQ infusion was associated with sustained moderate hypertension that resolved after 72 h recovery. Electrophysiologically, GDQ infusion was associated with reduced number and burden of postasphyxial seizures in the first 18 h of recovery (p < 0.05). Subsequently, GDQ was associated with induction of slow rhythmic epileptiform discharges (EDs) from 72 to 96 h of recovery (p < 0.05 vs asphyxia + vehicle). The total burden of EDs was associated with reduced numbers of neurons in the caudate nucleus (r2 = 0.61, p < 0.05) and CA1/2 hippocampal region (r2 = 0.66, p < 0.05). Conclusion: These data demonstrate that TLR7 activation by GDQ modulated blood pressure and suppressed seizures in the early phase of postasphyxial recovery, with subsequent prolonged induction of epileptiform activity. Speculatively, this may reflect delayed loss of early protection or contribute to differential neuronal survival in subcortical regions.  相似文献   

18.
Liver-specific deficiency of B-cell receptor-associated protein 31 knockout mice (BAP31-LKO) and the littermates were injected with acetaminophen (APAP), markers of liver injury, and the potential molecular mechanisms were determined. In response to APAP overdose, serum aspartate aminotransferase and alanine aminotransferase levels were increased in BAP31-LKO mice than in wild-type controls, accompanied by enhanced liver necrosis. APAP-induced apoptosis and mortality were increased. Hepatic glutathione was decreased (1.60 ± 0.31 μmol/g tissue in WT mice vs. 0.85 ± 0.14 μmol/g tissue in BAP31-LKO mice at 6 h, p < 0.05), along with reduced glutathione reductase activity and superoxide dismutase; while malondialdehyde was significantly induced (0.41 ± 0.03 nmol/mg tissue in WT mice vs. 0.50 ± 0.05 nmol/mg tissue in BAP31-LKO mice for 6 h, p < 0.05). JNK signaling activation and APAP-induced hepatic inflammation were increased in BAP31-LKO mice. The mechanism research revealed that BAP31-deficiency decreased Nrf2 mRNA stability (half-life of Nrf2 mRNA decreased from ~1.3 h to ~40 min) and miR-223 expression, led to reduced nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation and antioxidant genes induction. BAP31-deficiency decreased mitochondrial membrane potentials, reduced mitochondria-related genes expression, and resulted in mitochondrial dysfunction in the liver. Conclusions: BAP31-deficiency reduced the antioxidant response and Nrf2 signaling activation via reducing Nrf2 mRNA stabilization, enhanced JNK signaling activation, hepatic inflammation, and apoptosis, amplified APAP-induced hepatotoxicity in mice.  相似文献   

19.
Dietary phenolic compounds possess potent bioactivity against inflammatory pathways of chronic inflammatory conditions, such as type 2 diabetes. Here, the phenolic profile and bioactivity of Italian red wines Gaglioppo, Magliocco, and Nerello Mascalese were characterized. NMR, HPLC/UV-Vis and spectrophotometric characterization showed that Magliocco was the richest wine in monomeric anthocyanins (two-fold), catechins, and low molecular weight phenolics (LMWP). A positive correlation was observed between the polyphenolic content and antioxidant capacity (p < 0.05), with Magliocco displaying the highest antioxidant capacity (p < 0.01). In vitro evidence on the endothelial cell models of insulin resistance and hyperglycemia showed the ability of Magliocco to reduce reactive oxygen species (ROS) (p < 0.01) and cytokine release (p < 0.01) and to upregulate SIRT1 and SIRT6 (p < 0.01). On the whole, the results indicated that the quantitative and qualitative phenolic profiles of red wines influence their in vitro beneficial effects on oxidative and proinflammatory milieu in endothelial cells, showing a positive modulation of SIRT1 and SIRT6, both implied in vascular aging.  相似文献   

20.
Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号