首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the European Union, electricity production from wind energy is projected to increase by approximately 16% until 2020. The Austrian energy plan aims at increasing the currently installed wind power capacity from approximately 1 GW to 3 GW until 2020 including an additional capacity of 700 MW until 2015. The aim of this analysis is to assess economically viable wind turbine sites under current feed-in tariffs considering constraints imposed by infrastructure, the natural environment and ecological preservation zones in Austria. We analyze whether the policy target of installing an additional wind power capacity of 700 MW until 2015 is attainable under current legislation and developed a GIS based decision system for wind turbine site selection.Results show that the current feed-in tariff of 9.7 ct kW h−1 may trigger an additional installation of 3544 MW. The current feed-in tariff can therefore be considered too high as wind power deployment would exceed the target by far. Our results indicate that the targets may be attained more cost-effectively by applying a lower feed-in tariff of 9.1 ct kW h−1. Thus, windfall profits at favorable sites and deadweight losses of policy intervention can be minimized while still guaranteeing the deployment of additional wind power capacities.  相似文献   

2.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

3.
Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made.Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m2 at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries.In addition, the monthly wind turbine efficiency parameter (ηmonthly) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended.Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines.The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3€ cent/kWh, which is a competition price at the wind energy world market.  相似文献   

4.
The global market for wind power is expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 raise to fifteen-fold to reach 73,904 MW at the end of 2006. Top five wind electric power generating countries at the end of 2006 were Germany, Spain, United States of America (USA), India and Denmark. Since 1980s, when the first commercial wind turbine was deployed, their capacity, efficiency and visual design have all improved a lot. A modern wind turbine annually produces 180 times more electricity at less than half the cost per unit (kWh) than its equivalent twenty years ago. The largest turbines being manufactured now are of rated power of 5 MW capacity and a rotor diameter of 126 m. Modern turbines are modular and quick to install, whilst wind farms vary in size from a few MW to several hundred MW. Keeping these factors in view, an attempt has been made in this paper to present current advances in wind turbine generator technology. Wind energy scenario in the world in general and in India in particular have been presented. Further the cost components of wind turbine electric generation system have been included.  相似文献   

5.
《Journal of power sources》2006,162(2):943-948
This paper describes a novel method of modelling an energy store used to match the power output from a wind turbine and a solar PV array to a varying electrical load. The model estimates the fraction of time that an energy store spends full or empty. It can also estimate the power curtailed when the store is full and the unsatisfied demand when the store is empty. The new modelling method has been validated against time–stepping methods and shows generally good agreement over a wide range of store power ratings, store efficiencies, wind turbine capacities and solar PV capacities.Example results are presented for a system with 1 MW of wind power capacity, 2 MW of photovoltaic capacity, an energy store of 75% efficiency and a range of loads from 0 to 3 MW average.  相似文献   

6.
A feasibility study on hydrogen production from wind power on the site of Ghardaia is carried out. This study is based on the estimation of the hydrogen rate produced by a 5 kW electrolyser fed by the electricity provided by a 10 kW wind turbine.Wind speed data were used to study the monthly variation of the wind power delivered and its variation according to the height of the wind turbine tower.The obtained results show that it is possible to improve the system output by increasing the height of the wind turbine tower. Indeed, it has been obtained 3200 Nm3 of hydrogen production for a 30 m wind turbine height and 4200 Nm3 at 60 m.In addition, it has been noticed that hydrogen production varies strongly with the months of the year. Thus, the production has reached a maximum of 395 Nm3 in May and a minimum of 187 Nm3 during November and October.  相似文献   

7.
An attempt has been made, may be first time in Saudi Arabia, to utilize power of the wind for pumping the water for remotely located inhabitants not connected with national power grid. Small turbines of 1–10 kW have been chosen in conjunction with Goulds 45 J model water pumps to produce energy from wind and pump water using the produced energy at Arar, Rawdat Ben Habbas and Juaymah localities in Saudi Arabia. Wind speed measurements made at different heights using 40 m tall towers have been utilized in the present work. Higher wind speeds were noticed during summer time compared to winter time at all the locations. Both energy yield and cost of energy point of view, 2.5 kW wind turbine from Proven was found to be most suitable for wind power generation at all sites. It is shown that annual total water pumping capacity of 30,000 m3 is possible from a depth of total dynamic head of 50 m when using 2.5 kW Proven wind turbine with hub heights 15–40 m at all three sites with cost of water pumping as low as 1.28 US¢/m3.  相似文献   

8.
This study combines multi-year mesoscale modeling results, validated using offshore buoys with high-resolution bathymetry to create a wind energy resource assessment for offshore California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three categories: ≤20 m depth for monopile turbine foundations, ≤50 m depth for multi-leg turbine foundations, and ≤200 m depth for deep water floating turbines. The CA coast was further divided into three logical areas for analysis: Northern, Central, and Southern CA. A mesoscale meteorological model was then used at high horizontal resolution (5 and 1.67 km) to calculate annual 80 m wind speeds (turbine hub height) for each area, based on the average of the seasonal months January, April, July, and October of 2005/2006 and the entirety of 2007 (12 months). A 5 MW offshore wind turbine was used to create a preliminary resource assessment for offshore CA. Each geographical region was then characterized by its coastal transmission access, water depth, wind turbine development potential, and average 80 m wind speed. Initial estimates show that 1.4–2.3 GW, 4.4–8.3 GW, and 52.8–64.9 GW of deliverable power could be harnessed from offshore CA using monopile, multi-leg, and floating turbine foundations, respectively. A single proposed wind farm near Cape Mendocino could deliver an average 800 MW of gross renewable power and reduce CA's current carbon emitting electricity generation 4% on an energy basis. Unlike most of California's land based wind farms which peak at night, the offshore winds near Cape Mendocino are consistently fast throughout the day and night during all four seasons.  相似文献   

9.
This paper presents the results of a study undertaken for identifying niche areas in India where renewable energy based decentralized generation options can be financially more attractive as compared to grid extension for providing electricity. The cost of delivering electricity in remote areas considering cost of generation of electricity and also cost of its transmission and distribution in the country have been estimated. Considering electricity generated from coal thermal power plants, the delivered cost of electricity in remote areas, located in the distance range of 5–25 km is found to vary from Rs. 3.18/kWh to Rs. 231.14/kWh depending on peak electrical load up to 100 kW and load factor. The paper concludes that micro-hydro, dual fuel biomass gasifier systems, small wind electric generators and photovoltaic systems could be financially attractive as compared to grid extension for providing access to electricity in small remote villages.  相似文献   

10.
This paper presents some technical details, operational experiences, and lessons learnt by the Colombian public utility – Empresas Públicas de Medellín – with a recently installed 19.5 MW wind park in the northern region of Colombia – province of La Guajira. This is the first ever wind park feeding to the electricity network in Colombia. The Jepirachi Wind Park was commissioned in April 2004 and it has to date accumulated nearly 180,000 h of operation. During that time 15 NORDEX N60/1.3 MW turbines have fed electricity to the Colombian main electricity grid. This work describes the park layout, including meteorological stations installed in the surroundings and the wind regime prevailing in the zone. Details are also given about remote monitoring of the Wind Park and individual turbines, through the Supervisory, Control and Data Acquisition system (SCADA Nordex Control 2). Since July 2004, Empresas Públicas de Medellín (EEPPM) and Universidad de Los Andes-Bogotá, Colombia have been working together in a wind park performance monitoring programme. This has permitted both institutions to learn more rapidly matters relating to evaluation, planning and operation of wind parks exposed to extreme climatic conditions like those present in the semi-desert region of the Guajira. This work describes the wind park operation, where individual wind turbines have yielded monthly production capacity factors as high as 65–75%; values which are high when compared to similar turbines installed elsewhere. Accordingly, levels of electrical energy production of up to 1750 kWh/m2-year per turbine have been measured, exceeding typical values reported in the wind energy literature. A series of operational and technical troubles have become evident, which are related to some of the particular features of the climate and the wind regime at the site of the Jepirachi Wind Park. Because of these local features it is suggested that a greater level of uncertainty (limiting the validity of methods and hypotheses) may exist in the study and planning of future wind parks in regions such as La Guajira.  相似文献   

11.
《Energy Conversion and Management》2005,46(15-16):2501-2513
In view of rising costs, pollution and fears of exhaustion of oil and coal, governments around the world are encouraging to seek energy from renewable/sustainable energy sources such as wind. The utilization of energy from wind (since the oil embargo of the 1970s) is being widely disseminated for displacement of fossil fuel produced energy and to reduce atmospheric degradation. A system that consists of a wind turbine and Diesel genset is called a Wind–Diesel power system.The literature indicates that the commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present study, the hourly mean wind-speed data of the period 1986–1997 recorded at the solar radiation and meteorological station, Dhahran (26°32′N, 50°13′E in the Eastern Coastal Region of Saudi Arabia), has been analyzed to investigate the potential of utilizing hybrid (Wind–Diesel) energy conversion systems to meet the load requirements of a hundred typical two bedroom residential buildings (with annual electrical energy demand of 3512 MWh). The long term monthly average wind speeds for Dhahran range from 4.2 to 6.4 m/s. The hybrid systems considered in the present case study consist of different combinations/clusters of 150 kW commercial wind machines supplemented with battery storage and Diesel back-up. The deficit energy generated by the Diesel generator (for different battery capacities) and the number of operational hours of the Diesel system to meet a specific annual electrical energy demand of 3512 MWh have also been presented. The evaluation of the hybrid system shows that with seven 150 kW wind energy conversion system (WECS) and one day of battery storage, the Diesel back-up system has to provide 21.6% of the load demand. Furthermore, with three days of battery storage, the Diesel back-up system has to provide 17.5% of the load demand. However, in the absence of battery storage, about 37% of the load needs to be provided by the Diesel system. The study also places emphasis on the monthly average daily energy generation from different sizes (150 kW, 250 kW, 600 kW) of wind machines to identify the optimum wind machine size from the energy production point of view. It has been noted that for a given 6 MW wind farm size (for 50 m hub height), a cluster of forty 150 kW wind machines yields about 48% more energy as compared to a cluster of ten 600 kW wind machines.  相似文献   

12.
This work presents an assessment of per unit cost of electricity generated from 15 MW wind farm at 40 locations in the coastal areas of Pakistan using the method of net present value analysis. The Nordex N43/600 wind turbine has been selected and used as reference wind turbine. Wind duration curves were developed and utilized to calculate per unit cost of electricity generated from chosen wind turbine. In Sindh province, the minimum cost of electricity generated was found to be 4.2 ¢/kWh at Jamshoro, while the corresponding maximum was 7.4 ¢/kWh at Kadhan site. In Balochistan, the minimum cost of electricity generated was found to be 6.3 ¢/kWh at Aghore, while the corresponding maximum was 21.0 ¢/kWh at Mand site. The study concludes that at most of the locations especially in Sindh province, wind power is competitive to conventional grid connected thermal power even without considering the externalities.  相似文献   

13.
The present study undertakes an exergy and reliability analysis of wind turbine systems and applies to a local one in Turkey: the exergy performance and reliability of the small wind turbine generator have been evaluated in a demonstration (1.5 kW) in Solar Energy Institute of Ege University (latitude 38.24 N, longitude 27.50 E), Izmir, Turkey. In order to extract the maximum possible power, it is important that the blades of small wind turbines start rotating at the lowest possible wind speed. The starting performance of a three-bladed, 3 m diameter horizontal axis wind turbine was measured in field tests. The average technical availability, real availability, capacity factor and exergy efficiency value have been analyzed from September 2002 to November 2003 and they are found to be 94.20%, 51.67%, 11.58%, and 0–48.72%, respectively. The reliability analysis has also been done for the small wind turbine generator. The failure rate is high to an extent of 2.28×10−4 h−1 and the factor of reliability is found to be 0.37 at 4380 h. If failure rate can be decreased, not only this system but also other wind turbine systems of real availability, capacity factor and exergy efficiency will be improved.  相似文献   

14.
The high price of fossil fuels and the environmental damage they cause have encouraged the development of renewable energy resources, especially wind power. This work discusses the potential of wind power in Mexico, using data collected every 10 min between 2000 and 2008 at 133 automatic weather stations around the country. The wind speed, the number of hours of wind useful for generating electricity and the potential electrical power that could be generated were estimated for each year via the modelling of a wind turbine employing a logistic curve. A linear correlation of 90.3% was seen between the mean annual wind speed and the mean annual number of hours of useful wind. Maps were constructed of the country showing mean annual wind speeds, useful hours of wind, and the electrical power that could be generated. The results show that Mexico has great wind power potential with practically the entire country enjoying more than 1700 h of useful wind per year and the potential to generate over 2000 kW of electrical power per year per wind turbine installed (except for the Chiapas's State). Indeed, with the exception of six states, over 5000 kW per year could be generated by each turbine.  相似文献   

15.
This paper presents dynamic behavior and simulation results in a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. The hybrid system consists of a 195 kW wind turbine, an 85 kW solar array; a 230 kW microturbine and a 2.14 kAh lead acid battery pack optimized based on economic analysis using genetic algorithm (GA). At first, a developed Lyapunov model reference adaptive feedback linearization method accompanied by an indirect space vector control is applied for extraction of maximum energy from a variable speed wind power generation system. Then, a fuzzy logic controller is designed for the mentioned purpose and its performance is compared with the proposed adaptive controller. For meeting more load demands, the solar array is integrated with the wind turbine. In addition, the microturbine and the battery storage are combined with the wind and solar power generation system as a backup to satisfy the load demand under all conditions.A supervisory controller is designed in order to manage energy between the maximum energy captured from the wind turbine/solar arrays, and consumed energies of the load, dump load, battery state of charge (SOC), and generated energy by the microturbine. Dynamic modeling and simulation are accomplished using MATLAB Simulink? 7.2.  相似文献   

16.
This paper analyses the potential and the feasibility basis for the wind energy resources in some locations of coastal regions of Turkey. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results showed that Bal?kesir and Çanakkale among annual averages show higher value of mean wind speed. The mean annual value of Weibull shape parameter k is between 1.54 and 1.86 while the annual value of scale parameter c is between 2.52 m/s and 8.34 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of 600 kW, 1500 kW, 2000 kW and 2500 kW. The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

17.
This paper presents simulation results and power quality measurements of a wind farm. The wound rotor induction generator at 600 kW is employed for power conversion in the wind energy conversion system (WECS). This induction machine is connected to the drive circuit via rotor terminals and speed control is carried out by means of chopper circuit. The model used in the package program is experimentally tested on the single machine drive system at 3.5 kW in the laboratory, after which the power quality issues of the wind farm are investigated by using the same model for 12 wind turbines in PSCAD.  相似文献   

18.
The activities in field of renewable energy in Iran are focused on scientific and research aspects, and research part is aimed at reduction of capital required for exploitation of related resources. The second step is to work research results into scientific dimension of this field for practical means, i.e. establishing electricity power plants. Due to recent advancements in wind energy, many investors in the country have become interested in investing in this type of energy. At the moment, projects assuming 130 MW of wind power plants are underway, of which, 25 MW is operational. Based on the planning in the 4th Socioeconomic and Cultural Development Plan (2005–2010), private sector is expected to have a share of at least 270 MW in renewable energies. However, it is the government's duty to take the first step for investment in biomass and solar power plants; private sector may then play its part once the infrastructures to this end are laid out. At the moment, a 250 kW plant is under construction in Shiraz and two more geothermal units with 5 and 50 MW capacities will follow. Moreover, two biomass and solar energy plants, standing at 10 and 17 MW, respectively, are of other upcoming projects. The project of Iran's renewable energy, aims to accelerate the sustainable development of wind energy through investment and removal of barriers. This preparatory project is funded by the global environment facility (GEF) and will provide for a number of international and national consultant missions and studies. Once the studies are concluded, a project to develop 25 MW of wind energy in the Manjil region of Gilan will be prepared. It will be consistent with the national development frameworks and objectives and form part of 100 MW of wind-powered energy, which is expected to be developed under the government's third 5-year national development plan (started 21 March 2000).  相似文献   

19.
H. Li  Z. Chen 《Renewable Energy》2009,34(4):1175-1184
This paper investigates the possible site matching of the direct-drive wind turbine concepts based on the electromagnetic design optimization of permanent magnet (PM) generator systems. Firstly, the analytical models of a three-phase radial-flux PM generator with a back-to-back power converter are presented. The optimum design models of direct-drive PM wind generation system are developed with an improved genetic algorithm, and a 500-kW direct-drive PM generator for the minimal generator active material cost is compared to demonstrate the effectiveness of the design optimization. Forty-five PM generator systems, the combinations of five rated rotor speeds in the range of 10–30 rpm and nine power ratings from 100 kW to 10 MW, are optimally designed, respectively. The optimum results are compared graphically in terms of the generator design indexes. Next, according to the design principle of the maximum wind energy capture, the rotor diameter and the rated wind speed of a direct-drive wind turbine with the optimum PM generator are determined. The annual energy output (AEO) is also presented using the Weibull density function. Finally, the maximum AEO per cost (AEOPC) of the optimized wind generator systems is evaluated at eight potential sites with annual mean wind speeds in the range of 3–10 m/s, respectively. These results have shown the suitable designs for the optimum site matching of the investigated PM generator systems.  相似文献   

20.
This paper presents long-term analysis of wind speed data in terms of annual, seasonal and diurnal variations at Tindouf, which is situated on the south west region of Algeria. The wind speed data was collected over a period of 08 years between 1976 and 1984. The study showed that the long-term seasonal wind speeds were found to be relatively higher during September compared to other months. The diurnal change in long-term mean wind speed indicated that higher electricity could be produced during 09:00–18:00 h, which also coincides with higher electricity demand period. The annual wind energy production and capacity factor, obtained using wind speed frequency distribution and wind power curve of 1000 kW wind turbine and RETScreen software were found comparable with each other if unadjusted energy production values calculated by the software were used rather than the renewable energy delivered. Development of wind farm of 30 MW installed capacity at this site could result into avoidance of 23,252 tonnes/year of CO2 equivalents GHG from entering into the local atmosphere thus creating a clean and healthy atmosphere for local inhabitants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号