首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several countries are currently discussing whether they will rebuild their nuclear power stations in order to continue this type of energy production in the future. The public, with its own opinion about nuclear power stations, has an influential voice in this discussion. As a result, policy makers and nuclear scientists are interested in the public's perception of nuclear power and in what determines this perception. We therefore examined an explanatory model of the public's acceptance of nuclear power based on a telephone survey among a representative sample in Switzerland. The model included such factors as risk perception, benefit perception, affective feelings, and social trust. Moreover, we distinguished between two types of benefit perception: benefit for the climate and a secure energy supply. The model fitted very well to our data and explained acceptance very well. Acceptance was mainly influenced by perceived benefits for a secure energy supply and, to a lesser extent, both by perceived benefits for the climate and by risk perception. Affective feelings about nuclear power appeared to be a central factor in the model. Implications for communication about nuclear power stations and for further research are discussed.  相似文献   

2.
The paper quantifies the synergy-effects of an areal combination of biogas-plants with plants of the building materials industry (e.g. cement works) from the energetic and economical point of view. Therefore an overall process model based on energy and mass flow balances is developed to determine the effects of a combination of both plants in terms of energetic efficiency, investment and operating costs, greenhouse gas emission reduction and overall energy production costs. The results and the calculation procedure for a combination of biogas plants with cement works are presented in detail. The main benefits of this combination are the utilisation of low temperature excess heat sources from cement works for fermenter heating and the direct thermal utilisation of unprocessed biogas as a valuable, CO2-neutral fuel for combustion processes for instance clinker burning. Due to the combination, the energetic efficiency of the biogas plant, defined as utilisable energy output in relation to the energy content of the produced biogas, significantly increases from 63.0% to 83.8%. Concurrently the energy production costs are reduced, turning biogas into a competitive source of energy without the need for federal sponsorship. Calculations show, that production costs in combined plants for plant sizes larger than 90 m³STP/h biogas are even lower than the actual market prize of natural gas.  相似文献   

3.
Increasing shares of intermittent power sources such as solar and wind will require biomass fueled generation more variable to respond to the increasing volatility of supply and demand. Furthermore, renewable energy sources will need to provide ancillary services. Biogas plants with excess generator capacity and gas storages can adapt the unit commitment to the demand and the market prices, respectively. This work presents a method of day-ahead unit commitment of biogas plants with excess generator capacity and gas storage participating in short-term electricity and control reserve markets. A biogas plant with 0.6 MW annual average electric output is examined in a case study under German market conditions. For this biogas plant different sizes of the power units and the gas storage are compared in consideration of costs and benefits of installing excess capacity. For optimal decisions depending on prices, a mixed-integer linear programming (MILP) approach is presented.The results show that earnings of biogas plants in electricity markets are increased by additional supplying control reserve. Furthermore, increasing the installed capacity from 0.6 MW to 1 MW (factor 1.7) leads to the best cost–benefit-ratio in consideration of additional costs of excess capacity and additional market revenues. However, the result of the cost–benefit-analysis of installing excess capacity is still negative. Considering the EEG flexibility premium, introduced in 2012 in the German renewable energy sources act, the result of the cost–benefit-analysis is positive. The highest profit is achieved with an increase of the installed capacity from 0.6 MW to 2 MW (factor 3.3).  相似文献   

4.
Technological learning in bioenergy systems   总被引:1,自引:0,他引:1  
The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90–93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91–92%, i.e. an 8–9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions.  相似文献   

5.
Environmental and societal problems related to energy use have spurred the development of sustainable energy technologies, such as wind mills, carbon capture and storage, and hydrogen vehicles. Public acceptance of these technologies is crucial for their successful introduction into society. Although various studies have investigated technology acceptance, most technology acceptance studies focused on a limited set of factors that can influence public acceptance, and were not based on a comprehensive framework including key factors influencing technology acceptance. This paper puts forward a comprehensive framework of energy technology acceptance, based on a review of psychological theories and on empirical technology acceptance studies. The framework aims to explain the intention to act in favor or against new sustainable energy technologies, which is assumed to be influenced by attitude, social norms, perceived behavioral control, and personal norm. In the framework, attitude is influenced by the perceived costs, risks and benefits, positive and negative feelings in response to the technology, trust, procedural fairness and distributive fairness. Personal norm is influenced by perceived costs, risks and benefits, outcome efficacy and awareness of adverse consequences of not accepting the new technology. The paper concludes with discussing the applicability of the framework.  相似文献   

6.
An attempt towards the development of a generalized framework for analysis and evaluation of the various factors affecting the cost of the three types of biogas plants in India has been made. Four different approaches have been suggested for estimating the capital cost of biogas plants. The first cost function is based on the economies of scale in the capital cost, whereas the second cost function makes use of the fact that the ratio of the cost of a given size of plant to the cost of a reference plant remains almost constant in time. The third cost function takes into account the effect of retention time and other important factors on the capital cost, while the fourth cost function is based on the costs of constituents. An attempt to develop functional relationship for the operation and maintenance cost has also been made.  相似文献   

7.
Biogas has a huge potential as fuel for fuel cell power plants. In the present work developments in fuel processing of biogas for a phosphoric acid fuel cell power plant to be located in rural India are described. Experimental work including steam reforming and shift conversion of biogas and methane has been carried out in a laboratory development unit. It is confirmed that biogas is not only a useful fuel but also that the carbon dioxide in biogas has a positive effect on methane conversion. The biogas fuel cell power plant will give a high electrical efficiency on the small scale of biogas units.  相似文献   

8.
Integration/co-firing with existing fossil fuel plants could give near term highly efficient and low cost power production from biomass. This paper presents a techno-economical analysis on options for integrating biomass thermal conversion (optimized for local resources ∼50 MWth) with existing CCGT (combined cycle gas turbine) power plants (800–1400 MWth). Options include hybrid combined cycles (HCC), indirect gasification of biomass and simple cycle biomass steam plants which are simulated using the software Ebsilon Professional and Aspen Plus. Levelized cost of electricity (LCoE) is calculated with cost functions derived from power plant data. Results show that the integrated HCC configurations (fully-fired) show a significantly higher efficiency (40–41%, LHV (lower heating value)) than a stand-alone steam plant (35.5%); roughly half of the efficiency (2.4% points) is due to more efficient fuel drying. Because of higher investment costs, HCC options have cost advantages over stand-alone options at high biomass fuel prices (>25 EUR/MWh) or low discount rates (<5%). Gasification options show even higher efficiency (46–50%), and the lowest LCoE for the options studied for fuel costs exceeding 10 EUR/MWh. It can be concluded that clear efficiency improvements and possible cost reductions can be reached by integration of biomass with CCGT power plants compared to stand-alone plants.  相似文献   

9.
During its pioneer-stage in Germany, the generation of power and heat from anaerobic digestion (AD) was predominantly developed on organic farms. However, biogas production in organic agriculture (OR) never expanded to the same extent as in conventional farming (CV). Besides various other aspects, this appears to be mainly due to economic reasons related to system-specific production requirements. Therefore, this article analyses the framework conditions of organic biogas generation and assesses its monetary implications on production economics. The structural and economic comparison of organic and conventional generation of power from biogas displays systematic constraints for AD in OR and identifies advantages of conventional biogas plants, particularly concerning lower capital and biomass input costs. Moreover, frequently changing policy regulations, further aggravating the economic situation for biogas production in both farming systems, are reflected. Our study shows that the recent developments of political frameworks will inhibit biogas investments for nearly all types of biogas plants in Germany. Finally, an alternative evaluation approach for organic AD systems, considering monetary benefits from agronomic effects of an integrated biogas generation in organic agriculture is discussed.  相似文献   

10.
Biogas plants enable power to be generated in a flexible way so that variable, renewable energy sources can be integrated into the energy system. In Germany, the Renewable Energy Sources Act promotes flexible power generation in biogas plants. Two existing biogas plants in flexible operation were analyzed with respect to economic viability and greenhouse gas (GHG) emissions to assess the feasibility of flexible operation. To do this, a biogas technology simulation model was developed to reproduce the technical design of both biogas plants and to link this design with twelve flexibilization scenarios. The evaluation of the economic viability is based on a discounting method of investment appraisal. For assessing the level of GHG emissions, the life cycle assessment method has been applied. The results show that the profitability of flexibilization is contingent upon premium payments promoting flexibility and direct sales resulting from a higher electrical efficiency of new or additionally installed combined heat and power units. Overall, with respect to profitability, the results of the flexible power generation scenarios are dependent upon the properties of the technical plant, such as its power generation and gas storage capacities. Relative GHG emissions from flexible biogas plants show significantly lower values than for referenced fossil gas–steam power stations. Among the various scenarios, the results reveal that the level of GHG emissions especially depends on the number of operating hours of the additional combined heat and power unit(s). The results of the analyzed biogas plants showed no direct correlation between GHG emissions and the economic benefits. Overall, a flexible power generation of biogas plants may improve the economic viability as well as result in lower GHG emissions in comparison with a conventional base load operation. © 2016 The Authors. International Journal of Energy Research published by John Wiley & Sons Ltd.  相似文献   

11.
This article discusses public acceptance of carbon capture and storage (CCS). Responses by citizens are described in relation to responses by professionally involved actors. Interviews with members of the government, industry and environmental NGOs showed that these professional actors are interested in starting up storage projects, based on thorough evaluation processes, including discussions on multi-actor working groups. As appeared from a survey among citizens living near a potential storage site (N=103), public attitudes in general were slightly positive, but attitudes towards storage nearby were slightly negative. The general public appeared to have little knowledge about CO2-storage, and have little desire for more information. Under these circumstances, trust in the professional actors is particularly important. NGOs were found to be trusted most, and industry least by the general public. Trust in each of the three actors appeared to depend on perceived competence and intentions, which in turn were found to be related to perceived similarity of goals and thinking between trustee and trustor. Implications for communication about CCS are discussed.  相似文献   

12.
This article adds to the growing insight into public acceptance by presenting a novel approach to how citizens make sense of new energy infrastructure. We claim that to understand public acceptance, we need to go beyond the current thinking of citizens framed as passive respondents to proposed projects, and instead view infrastructure projects as enacted by citizens in their local settings. We propose a combination of sensemaking theory and actor–network theory that allows insight into how citizens enact entities from experiences and surroundings in order to create meaning and form a reaction to new infrastructure projects. Empirically, we analyze how four citizens make sense of an electricity cable project through a conversation process with a representative from the infrastructure developer. Interestingly, the formal participation process and the materiality of the cable play minor roles in citizens' sensemaking process. We conclude that insight into the way citizens are making sense of energy infrastructure processes can improve and help to overcome shortcomings in the current thinking about public acceptance and public participation.  相似文献   

13.
When transitioning to a 100% renewable energy system storing electricity becomes a focal point, as the resource flexibility is lost and the design of the energy system needs to provide flexibility and balancing options to integrate intermittent renewable resources. Using technologies such as power-to-gas offers an opportunity to store electricity in chemical form, which can be used as a long-term storage option. This paper develops a spatial modelling method by using a GIS tool to investigate potential generation sites for power-to-gas plants. The method determines the location of the plants by carbon source potential, proximity of the grid, costs of grid transmission and investment costs of the technology itself. By combining these types of data, it is possible to identify the investment costs of the power-to-gas plants. The method focuses on two paths: biogas upgrade and CO2 methanation. The method is applied to a specific case by investigating the power-to-gas potential in Denmark. The potential and spatial deployment is found by examining the investment costs of plants with an annual gas production of 60 GWh. The findings of the analysis indicate that the biogas upgrade path is the cheapest one of the two, at the present cost level, but due to the relatively small number of biogas plants in Denmark, the chosen plant size is limited to around 55 plants. CO2 methanation is a more costly path, but it has a larger potential of around 800 plants. As the analysis is based on the current sources for biogas and CO2, it is important to emphasise that the potential for CO2 methanation plants can be expected to diminish in the future as more renewable energy is introduced, lowering the need for thermal energy producers, while biogas production could see an increase. Nevertheless, the analysis of a specific case shows that the method gives a good indication of the extent of the power-to-gas resources by using a novel approach to the matter. The method can be applied in other countries as well, giving it a wide appeal.  相似文献   

14.
Domestic biogas programs are often justified on the basis of the private benefits and costs accruing to the individual households, in terms of providing a superior cooking fuel, improved indoor air quality and saving of time spent on collecting firewood. This paper contends, however, that the economic surpluses from domestic biogas programs are realized beyond such narrowly defined project boundaries. The paper maintains that economic value addition from the consumptive use of the biogas for cooking and the non-consumptive and indirect value derived from the biogas plant providing feedstock for other processes and other such benefits as greenhouse gas mitigation (positive externalities) need to be accounted for. The process approach adopted by this paper would enable an integrated view of the value chain and consequently, a mechanism to reallocate costs and to distribute such surpluses.  相似文献   

15.
大型热电肥联产沼气发电工程分析   总被引:3,自引:0,他引:3  
从工艺流程、技术参数、运行状况以及效益分析等方面对现今国内畜禽场规模最大的沼气发电工程进行技术分析。运行表明,通过全混式厌氧发酵(CSTR)两级工艺,纯鸡粪进行厌氧发酵沼气发电是确实可行的;该工程的成功既解决了鸡粪污染,又产生了巨大的经济社会效益,对实现畜禽粪便综合利用具有良好的示范效果,并可为同类型沼气发电工程设计和建设提供参考。  相似文献   

16.
This paper explores Turkish urban households’ willingness to pay (WTP) for CO2 emission reductions expected to result from improvements in power production. A face-to-face questionnaire, with a Contingent valuation (CV) module prepared using the double-bounded dichotomous choice elicitation framework, was administered to 2422 respondents representative of urban Turkey—a developing country with low but rapidly increasing greenhouse gas emissions. The determinants of WTP were identified by considering not only the impact of standard socio-economic factors but also the effects of environmental knowledge, attitudes and behaviour, the relevance of the identity of the collection agent (national versus international institutions) in terms of trust people have towards them, and the degree of perceived participation of others in the realization of the project. Our study confirms the existing literature in demonstrating that WTP figures reported by young and educated people that are active on environmental issues, and who also possess material security and environmental knowledge, are more likely to be high. However, their willingness to make contributions is hampered significantly by their belief that their fellow citizens will not contribute and the general lack of trust in institutions. Overall, this study may be taken as a call to eliminate governance-related uncertainties in climate change deals.  相似文献   

17.
Biogas is a promising renewable fuel, which can be produced from a variety of organic raw materials and used for various energetic purposes, such as heat, combined heat and power or as a vehicle fuel. Biogas systems implementation are, therefore, subjected to several support measures but also to several constraints, related with policy measures on energy, waste treatment and agriculture. In this work, different policies and policy instruments, as well as other factors, which influence a potential expansion of Portuguese biogas systems are identified and evaluated. The result of this analysis shows that the use of the cattle manure for biogas production is still far from its potential. The main reason is the reduced dimension of the Portuguese farms, which makes biogas production unfeasible. Various options are suggested to increase or improve biogas production such as co-digestion, centralized plants and modular plants. Horizontal digesters are the most suitable for the typical Portuguese plant size and have the advantage of being also suitable for co-digestion due to the very good mixing conditions. Mesophilic anaerobic digestion due to a more robustness, stability and lower energy consumption should be the choice. The recent increase in the feed-in tariffs for the electricity production based on anaerobic digestion biogas is seen as a political push to this sector.  相似文献   

18.
19.
The article investigates prospects and challenges for expanding of sustainable biogas energy in Poland. The number of Polish biogas fuelled power plants and installed electrical power during the 2001-2010 decade is presented. Current economical incentives for biogas energy are discussed. It is emphasized that some revisions to the Polish tradable certificate system are urgently needed in order to encourage energy crop cultivation and the use of best available power technologies. Further, promising, but mostly unexplored feedstocks, such as energy crops, grasses and sorted municipal organic wastes are analyzed. It is also revealed that agrobiogas is characterized by a unique feature of ‘negative net’ CO2 atmospheric emissions and thus the role of agrobiogas in solving Polish CCS dilemmas is discussed. In regard to biogas energy systems it is stressed, that the cost of electricity from biogas is almost independent on the size of agrobiogas CHP power plants in the range of 0.2-5 MWe. Therefore agrobiogas energy is well suited for distributed energy systems involving small-scale agrobiogas power plants offering more green jobs and improved local waste management characteristics. Finally, reliable technologies suitable for biogas energy conversion and upgrading of biogas fuel to marketable gaseous fuels are briefly characterized.  相似文献   

20.
With the urgent need to decarbonise the world's energy system, clean hydrogen is emerging as a potential technological solution. As with any new technology, understanding the public's response to hydrogen is critical to its success. Most studies examining public attitudes towards hydrogen have focused on refuelling stations and transport options. As a first of its kind, using a national survey (N = 2785) we evaluate the Australian public's response towards hydrogen for domestic and export use. In Australia, acceptance of hydrogen in domestic applications was influenced by its relative cost, ability to reduce air pollution and associated health benefits. Further, support for a hydrogen export industry was influenced by levels of trust in the government to manage the associated risks and the industry's commitment to climate protection. The paper concludes that effective, nuanced communication and engagement along with supporting financial policies will be critical in facilitating societal acceptance of hydrogen in Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号