首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
储能系统具有优质调频电源的特征,利用储能辅助电力调频不仅有利于电网的整体运行,而且有助于提升电网调频的经济效益及环境效益。本文分析了电网频率控制模式以及储能参与电力系统调频的可行性,提出储能参与电力系统调频的5种应用场景,搭建了3区 8机等效模型仿真研究不同场景下储能系统运行边界,验证固定单位调节功率及变单位调节功率的计算方法,以及二次调频中域控制误差(ACE)信号在多个储能单元中的分配原则。仿真结果表明:固定单位调节功率K,在阶跃负荷扰动下K值宜取5,在连续负荷扰动下K值宜取10;在二次调频中多个储能单元之间,基于储能荷电状态(SOC)幂函数的功率分配原则可实现功率的合理分配。  相似文献   

2.
随着日益增多的非传统能源进入发电领域,电力系统的频率波动问题越发严峻。火电机组调频缺陷是响应时间长、爬坡速度慢;而电池储能因其响应迅速、调节灵活等优点逐渐成为电力系统调频的研究热点。本文首先介绍了储能参与电力系统二次调频的区域控制偏差和区域控制需求2种基本方式,并分析了这2种基本控制方式的特点;对区域控制偏差和储能系统电池的荷电状态(SOC)进行分区,在不同区域计及频率调节需求和储能系统出力特点提出不同的调频方式,并在区域控制偏差正常调节和SOC正常充放电状态下,采用模糊控制器平滑储能系统出力;最后利用MATLAB/Simulink仿真平台建立2区域互联仿真系统,仿真结果证明了区域偏差控制和SOC分区控制策略的可行性。  相似文献   

3.
传统的火电与水电调频机组因其固有特性难以满足电力系统快速发展、新能源发电集中并网等引起的频率稳定控制需求,储能以其灵敏精准的出力特性逐步在电力系统调频领域中实现了规模化应用。针对规模化储能资源响应速度快、跟踪精度高、调节方向易改变及有限的容量等特点展开了其参与电网调频的控制策略研究:首先,建立了区域电网自动发电控制(AGC)系统及包含储能荷电状态(SOC)的储能系统仿真模型;然后,综合考虑储能资源与常规电源的发电特性,提出了计及储能SOC的快慢速调频资源协调控制策略;最后,搭建了4种不同的仿真场景,通过仿真试验对提出的控制策略的有效性进行了验证。  相似文献   

4.
新能源接入现有电网将弱化系统的频率稳定性。充分利用调频资源对提升电网稳定性具有重要意义。火电作为当前调频主要资源有着复杂多变的特性,在不同工况下调频能力也会不同;且随着渗透率提高,传统的下垂控制调频方式逐渐不能满足控制要求。因此,提出一种储能–火电互补频率控制策略,设计了随频率变化自适应调节的出力比重系数,实现了储能出力的自适应调整,并将线性自抗扰控制(Linear active disturbance rejection control,LADRC)应用于火电机组的控制,通过频域法分析典型工业控制对象的LADRC参数调节规律。仿真结果表明,相较于传统下垂控制策略,所提出的储能–火电互补频率控制策略使系统的频率偏差最大值与稳态偏差值显著降低,并且有更好的储能恢复效果。  相似文献   

5.
考虑电池储能系统自身容量限制下提升一次频率响应的自适应性,提出一种计及荷电状态(SOC)的电池储能系统一次调频综合控制策略.建立电池储能系统一次调频动态模型,对比分析了虚拟惯性与虚拟下垂控制对电网频率偏差的调节特性.设计考虑SOC的电池储能系统一次调频自适应综合控制策略,并引入一种由综合考虑频率偏差及其变化率的输入系数与计及电池储能系统SOC的反馈系数相结合的自适应因子,输入系数由模糊逻辑控制器自适应调节,反馈系数通过回归函数自适应调节.最后搭建仿真模型进行阶跃和连续负荷扰动工况下不同控制策略对比分析,仿真结果验证了所提控制策略能自适应控制电池储能系统出力,有效提升一次调频效果.  相似文献   

6.
随着大量电动汽车接入互联电网,其移动的充电模式会给电网带来一定的冲击,反过来,电动汽车作为一种移动式储能单元可参与互联电网调频,但目前的研究都是集中式或分散式的V2G控制上.在电动汽车储能电池动态模型的基础上,构建含电动汽车集群的多区域互联电网负荷频率控制模型,基于广域监测系统,结合模型预测控制实现了多区域电网负荷频率广域分散预测控制.在MATLAB/Simulink中搭建三区域互联电网模型,并进行仿真分析.算例结果表明,电动汽车作为移动式储能单元参与互联电网调频,可以在短时间内平抑电网频率波动;而文中提出的广域分散预测控制方法较经典的PI控制方法,能将三区域电网的频率偏差限制在更小的范围内波动,又能较快地恢复至稳态值.  相似文献   

7.
随着大规模新能源并入电网,电池储能以其迅速、精准出力的特性可以有效抑制自动发电控制中由于新能源出力波动而带来的频率稳定问题。为此,提出电池储能辅助二次调频的模型预测控制策略。该控制策略将区域控制偏差信号划分成不同的区间,兼顾电网调频需求及电池储能荷电状态恢复需求,在每个区间内基于模型预测控制方法确定电池储能的出力目标与出力深度。以两区域双机互联电网调频模型为例,仿真结果表明:与对比方案相比,文中所提的控制策略能在电池储能满足安全工作约束下,对频率偏差和区域控制偏差具有良好的抑制效果,还较好地协调了频率控制质量与自身荷电状态的平衡。  相似文献   

8.
电池储能可快速吞吐功率,被视为优质调频资源,但过度充放电会导致其调频能力不足。文中提出一种改善的储能系统参与一次调频效果的控制策略。首先,将储能调频死区设置在机组死区范围内,并结合电网频率特性分析储能调频死区变化对频率的影响。在此基础上,基于权重因子和荷电状态(SOC)恢复提出储能参与的一次调频策略:在频率波动超过储能调频死区时,为避免电池过度充放电提出储能调频系数计算方法,同时引入控制虚拟惯性和虚拟下垂出力比重随频率变化而调节的权重因子,进而设计了调频控制方法;在频率不超过储能调频死区时,兼顾储能恢复需求和电网承受能力,提出储能SOC恢复方法。仿真结果表明:所提策略能有效改善电网频率波动和储能SOC。  相似文献   

9.
储能系统具有响应迅速、跟踪精确的特点,将其应用于区域电网的一次调频时,可以有效改善区域电网暂态频率特性。为了实现储能系统与区域电网中常规机组一次调频的配合,基于区域电网的一次调频理论模型,分析了常规机组独立参与一次调频时及与储能系统配合参与一次调频时的各自特性及相互配合的问题。基于此,提出了常规机组作为一次调频主体,储能系统承担功率缓冲的配合原则;并提出了包含改进下垂控制、调频退出控制及能量管理控制的完整的储能系统参与一次调频的控制策略。最后,搭建了相应的仿真模型,验证了控制策略的正确性。  相似文献   

10.
储能电源参与电网调频的需求评估方法   总被引:1,自引:0,他引:1  
基于风电功率波动特征,定量研究了大规模风电并网对电网频率的影响。定义了考察风电并网对电网频率影响的量化指标,构建了电网等效区域模型和储能电源参与一次调频的仿真模型,仿真分析了风电并网环境下,传统机组一次调频和储能电源参与一次调频2种情形下的电网频率波动特征。研究结果表明,利用储能电源的快速吞吐能力辅助电网一次调频,能有效抑制风电功率中、高频波动分量对电网频率的影响,显著减小电网频率波动,大幅度减小风电并网环境下传统机组的二次调频压力和容量需求,从而论证了大规模风电并网条件下,储能电源参与电网调频的技术必要性。  相似文献   

11.
高比例新能源电网中,功率与频率变化存在很强的非线性,自动发电控制(AGC)作为电网调节频率的主要控制手段,目前的控制方式无法很好地适应强非线性特性电网的调频需求。鉴于此,提出了基于极限学习机(ELM)预测模型的高比例新能源电网改进频率控制策略。其特点在于通过ELM算法和历史运行数据,建立电网功率变化与频率变化的实时频率预测模型,进一步基于预测模型分析AGC调节机组的调频能力,按照调频能力优化AGC的区域功率控制需求功率分配。其优势在于通过机器学习拟合频率非线性调节规律,优化AGC频率控制,提高系统频率调节的快速性和可靠性,从而提高含新能源电网稳定性。最后通过电网SCADA实际数据建立预测模型并验证其准确性和实时性,并通过应用实例证明所提策略可以实现快速稳定调频。  相似文献   

12.
风-火互补发电系统区域频率控制的策略研究   总被引:5,自引:0,他引:5       下载免费PDF全文
风能与传统能源互补发电给互联电网各方带来了巨大的安全经济效益,对互联电网频率控制的分析与研究是电力系统不可忽视的部分。讨论了发电系统的一次调频和二次调频,分析加入风力发电后,风-火互补发电的区域频率控制,给出模型方案(增加PI调节环节进行改进),对其中的三种控制模式(TBC-FTC、TBC-FFC、TBC-TBC)进行研究。仿真图及仿真结果数据验证了风-火互补发电的区域频率控制的可行性。与传统的单区域频率调节相比,加入了风电的多区域频率控制能改善频率调节的性能。  相似文献   

13.
新能源渗透率的提高,增加了电网频率控制的复杂度,储能辅助电网调频能在一定程度上缓解该问题,但受储能运行的安全性与经济性约束,需要调频措施更具针对性。本文对此展开研究,提出一种基于频率响应特性的储能辅助电网一次调频方法。首先,在储能辅助电网调频模型基础上,选择惯性加下垂的储能辅助电网调频综合控制方法,通过电网频率变化率(rate of change of frequency,RoCoF)、频率偏差与调频需求的关联性分析,设计基于频率响应特性的调频需求分区规则;然后,根据不同调频需求对应的分区判断,对储能有功输出方式进行动态调整,以响应调频需求的不确定性;在此基础上,针对调频需求与储能出力需求、储能出力强弱与其循环使用寿命间的矛盾关系,通过多目标优化问题的设计与求解来予以平衡。最后,仿真结果验证了所提方法能够在保证电网调频效果的基础上,有效降低储能充放电深度。  相似文献   

14.
风电等可再生能源大规模并网,其间歇性和波动性的出力特性会给电网带来机组调频容量不充足、调频效果不理想等调频问题。为此,文中提出一种大规模储能参与电网调频的双层控制策略。首先,基于复频域分析提出区域调节需求信号分配模式和区域控制误差信号分配模式的切换时机判据。然后,全面考虑不同调频电源的技术特征,提出大规模电池储能和火电机组协调响应系统自动发电控制指令的双层控制策略,在上层基于电源调频成本函数实现多约束条件下的功率经济分配,在下层基于模型预测控制实现频率分布式优化控制。最后,通过仿真验证了文中所提策略的经济性和有效性。  相似文献   

15.
直流受端电网中大容量直流功率的馈入和大量分布式光伏及储能经电力电子变换器接入,导致受端电网同步机电源逐渐被取代,系统等效惯量下降,严重影响了受端电网的频率特性。因此,挖掘电网调频资源、增加电网频率控制的灵活性十分重要。针对上述问题,基于一致性算法,提出了利用受端电网中配电网的分布式调频资源,包括分布式光伏、储能、柔性负荷等协同参与电网一次调频的分布式控制方法。该控制方法能够有效应对由于调频资源数量大而导致的计算难度增大问题,并可通过定时刷新分布式调频资源的运行状态并自适应计算频率响应系数,实现在故障发生时快速响应频率变化。通过对等效直流受端电网中配电网调频资源以不同控制策略参与频率调节的仿真对比分析,验证了文中方法对直流受端电网频率调节的有效性及经济性。  相似文献   

16.
针对电动汽车(EV)聚合建模忽略单体差异以及EV辅助电网调频难以兼顾经济性与稳定性等问题,该文首先,考虑电池容量差异,基于马尔科夫链理论提出了EV动态演化过程转移概率计算方法,推导了关于荷电状态的转移概率分布函数,构建了EV聚合模型,并建立了EV参与的两区域互联系统联合调频控制模型;然后,提出了基于稳定经济模型预测控制的双模态集群EV辅助电网调频控制策略,模态1通过经济模型预测控制降低调节成本,模态2利用辅助控制器确保系统稳定性;最后,通过仿真算例表明,聚合模型具有较高精度,控制策略能够优化协调各资源出力,在维持系统频率稳定的基础上,改善了频率调节过程中系统的经济性。  相似文献   

17.
风机通过电力电子设备连接至电网,当转子动能与系统频率解耦,无法为电网频率变化提供惯性支撑,随着系统中风电比例的增加,系统频率稳定受到严峻挑战。文中提出一种变系数综合惯性控制方法,风机能够根据频率的扰动灵活调节输出功率;在此基础上,提出结合桨距角备用控制协同调频方法,通过对风速的分段处理,使风电机组参与电网调频具有针对性;为进一步优化风电机组调频性能,风电并网系统增加了储能装置,通过对风储系统惯性进行详细分析,提出了一种风储系统联合调频控制策略,采用模糊控制策略对中高风速区间风储出力分配制定相应的规则,实时调节储能出力系数。最后对风储调频策略进行仿真验证,结果表明,所提方法能有效改善风电机组调频效果,保证高比例风电并网的频率稳定。  相似文献   

18.
快充电站的大功率运行特性加剧了电网失稳风险,成为限制其规模化应用的瓶颈,在此背景下提出了含储能快充电站的应用模式。针对充储网络与配电网双向融合产生的频率、电压支撑等暂态问题与负荷削峰填谷等中长期动态稳定问题,提出一种电池储能系统多时间尺度仿真模型,并对各组成模块的控制策略展开研究。首先,采用功率解耦控制方式实现储能系统的调节能力最大化;其次,为增强储能系统自动检测、快速调节和精准控制的能力,在仿真模型中加入附加频率控制、电压控制环节,并设置限幅约束和动作死区。最后,基于区域配电网中含储能快充电站实例,对储能系统仿真模型及其控制策略的有效性进行验证分析。  相似文献   

19.
主要研究考虑风电参与电网调频下的区域电网频率控制。将传统区域模型中的频率输出作为风电惯性环节和一次调频环节的输入,建立了含风电的区域电网数学模型。在此模型基础上研究风电机组对电网频率恢复的贡献,并且通过粒子群算法优化比例积分控制器参数,改进比例积分控制,使其适应包含风电的区域电网。通过仿真对比风电未参与调频、区域一风电参与调频和两区域风电参与调频三种情况下系统频率和区域控制偏差的恢复情况。得出当电力系统发生扰动时,风电参与系统调频能够减少系统频率动态极值,对电力系统的稳定和安全具有积极意义。  相似文献   

20.
针对储能电站参与调频时与传统机组的协调问题及通信延迟产生的影响,设计了一种含荷电状态(SOC)修正和通信延迟的储能电站负荷频率鲁棒控制方法.首先,在储能电站参与频率控制过程设计SOC回归修正环节与传统机组进行协调而实现SOC裕度调节,同时考虑协调过程存在通信延迟问题,建立含储能电站SOC回归修正的区域电网延迟系统模型.其次,考虑通信延迟对于系统控制性能的影响,在负荷频率控制系统延迟边际计算的基础上,设计储能电站负荷频率控制的系统鲁棒控制器,对可再生能源功率扰动进行抑制并实现系统频率的快速恢复与偏差调节.最后,基于MATLAB/Simulink平台对负荷频率控制系统进行仿真验证,结果证明了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号