首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
The influence of different treatments (in H2 or in O2 at 250 or 600 °C) of alumina supported Ru catalysts on the total oxidation of propane was investigated. Ruthenium catalysts were prepared using RuCl3 as metal precursor and characterized by H2 chemisorption, O2 uptake, BET, XRD and TEM. The presence of chloride on the catalyst surface was found to exert an inhibiting effect on the activity of Ru. The reduced Ru/γ-Al2O3 catalysts after partial removing chlorine ions were more active than the same samples oxidized at 250 °C. The higher activity of the reduced Ru/γ-Al2O3 catalysts was attributed to the presence of a large amount of active sites on small Ru x O y clusters without well defined stoichiometry or on a poorly ordered layer of a ruthenium oxide on the larger Ru particles. The formation of highly dispersed, but in some extent crystallized RuO2 phase in catalysts oxidized at 250 °C, leads to slightly lower activity of the Ru phase. Strong decline of the activity was found for catalysts oxidized at 600 °C. At this temperature, the Ru particles were completely oxidized to well-crystallized RuO2 oxide, and the mean crystallite size of the Ru oxide phase was much higher (9–25 nm) than that of after oxidation at 250 °C (~4 nm). The effect of the regeneration treatment in H2 on the activity of the Ru/γ-Al2O3 catalysts was also studied. The active ruthenium species for propane oxidation were discussed based on the catalytic and characterization data both before and after activity tests.  相似文献   

2.
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature-programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.  相似文献   

3.
Macro-porous monolithic γ-Al2O3 was prepared by using macro-porous polystyrene monolith foam as the template and alumina sol as the precursor. Platinum and potassium were loaded on the support by impregnation method. TG, XRD, N2 adsorption–desorption, SEM, TEM, and TPR techniques were used for catalysts characterization, and the catalytic performance of macro-porous monolithic Pt/γ-Al2O3 and K–Pt/γ-Al2O3 catalysts were tested in hydrogen-rich stream for CO preferential oxidation (CO-PROX). SEM images show that the macropores in the macro-porous monolithic γ-Al2O3 are interconnected with the pore size in the range of 10 to 50 μm, and the monoliths possess hierarchical macro-meso(micro)-porous structure. The macro-porous monolithic catalysts, although they are less active intrinsically than the particle ones, exhibit higher CO conversion and higher O2 to CO oxidation selectivity than particle catalysts at high reaction temperatures, which is proposed to be owing to its hierarchical macro-meso(micro) -porous structure. Adding potassium lead to marked improvement of the catalytic performance, owing to intrinsic activity and platinum dispersion increase resulted from K-doping. CO in hydrogen-rich gases can be removed to 10 ppm over monolithic K–Pt/γ-Al2O3 by CO-PROX.  相似文献   

4.
Ru/κ-Al2O3 catalysts with different Ru dispersions were prepared by controlling the pretreatment conditions, and were applied to selective CO oxidation in H2. The prepared catalysts were characterized by N2 physisorption, transmission electron microscopy, temperature-programmed oxidation, CO chemisorption, and O2 chemisorption. The Ru dispersion decreased with increasing reduction and oxidation temperature of Ru/κ-Al2O3. The turnover frequency for CO oxidation in H2 increased as the Ru particle size increased from 2.2 to 3.6 nm, whereas the apparent activation energy decreased as the Ru particle size increased from 2.2 to 3.4 nm for 1% Ru/κ-Al2O3. However, larger Ru particles were not always favorable for the selective CO oxidation in H2 because H2 oxidation was also promoted by these catalysts. In the case of the 1 wt% Ru/κ-Al2O3 catalyst, Ru nanoparticles of approximately 3 nm appeared to be optimal for the selective CO oxidation in H2 on the basis that they provided the widest temperature window, resulting in complete removal of CO even in the presence of H2O and CO2.  相似文献   

5.
A series of Pd/γ-Al2O3 catalysts was prepared from [Pd(hfac)2] (hfac = hexafluoroacetylacetonate) in liquid carbon dioxide using the method reported by Kim et al. [Chem Mater 18:4710 (2006)]. The catalysts were characterized using CO pulse chemisorption, diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray absorption fine structure (XAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron microscopy. The catalysts were reduced initially in the high-pressure CO2 reaction cell using H2 at 75 °C. Samples were removed, stored in a desiccator, and re-reduced in situ at 250 °C prior to pulse chemisorption, DRIFTS and XAFS. CO pulse chemisorption evidenced that the Pd dispersion decreased from 55% to 5% as the Pd loading increased from 0.58 to 3.94 wt.%. The as-prepared 0.58 and 1.77 wt.% Pd/γ-Al2O3 catalysts (after air exposure) contained oxidized Pd species that were converted after in situ reduction to supported Pd particles. The average Pd particle sizes of these two catalysts (16 and 23 Å, respectively) estimated from the first-shell Pd–Pd coordination numbers are in good agreement with the CO chemisorption results. DRIFTS evidenced a prevalence of weakly bound linear CO (νCO = 2083 cm?1) adsorbed on the 0.58 wt.% Pd catalyst. A 2.95 wt% Pd catalyst (49 Å average particle size) also exhibited a strong linear CO band (νCO = 2093 cm?1). In contrast, CO chemisorption on a commercial 1 wt.% Pd/Al2O3 catalyst (37 Å average particle size) gave predominantly 2-fold bridging CO species. We infer that the supported Pd particles prepared from [Pd(hfac)2] are rougher on the atomic scale (with a higher percentage of edge and corner atoms) than equivalently sized particles in conventionally prepared Pd/γ-Al2O3 catalysts.  相似文献   

6.
The results of research of the Pt-, Ru- and Pt–Ru/2% Ce/(θ + α)-Al2O3 catalysts with various ratio of Pt to Ru for selective catalytic oxidations of CH4 into synthesis-gas at short contact times are presented. Optimum conditions for preparation of catalysts were found. It was established that the CH4 conversion at 1,173 K changes from 96 to 100%, selectivity by H2—100%, and CO—95–100% at contact times 3.0–4.0 ms.  相似文献   

7.
Carbon monoxide is a poison to the Pt anode in proton exchange membrane fuel cell (PEMFC). Preferential oxidation (PROX) is an effective method to reduce CO in hydrogen-rich gas streams to a tolerant level. In the present work, the effect of adding cobalt to Pt/γ-Al2O3 on the PROX of CO was investigated. Our results showed that the addition of Co to Pt/γ-Al2O3 could not only improve the low-temperature activity but also reduce significantly the loading of Pt in the catalysts. Over the catalyst 3%Co/1%Pt/γ-Al2O3 the conversion of CO was close to 100% at 90 °C and space velocity of 8000 mL g?1 h?1. In addition, the Co-promoted Pt/γ-Al2O3 catalyst showed good resistance to H2O and CO2 and could be operated in a wide range of space velocity. At temperatures above 90 °C, the existence of H2O in the feed increased the conversion and broadened the operating temperature range without worsening the selectivity. When space velocity was changed from 8000 to 80,000 mL g?1 h?1 and temperatures was kept between 120 and 160 °C, the conversion of CO was always over 99% and the decrease in O2 selectivity did not exceed 10%. Furthermore, a strong opposite effect of the ratio of O2 to CO on the conversion of CO and the selectivity of O2 was observed. However, at the O2/CO ratio of 1.0 and temperatures between 120 and 160 °C, a satisfied balance between conversion and selectivity could be obtained.  相似文献   

8.
CO2 methanation over supported ruthenium catalysts is considered to be a promising process for carbon capture and utilization and power-to-gas technologies. In this work 4% Ru/Al2O3 catalyst was synthesized by impregnation of the support with an aqueous solution of Ru(OH)Cl3, followed by liquid phase reduction using NaBH4 and gas phase activation using the stoichiometric mixture of CO2 and H2 (1:4). Kinetics of CO2 methanation reaction over the Ru/Al2O3 catalyst was studied in a perfectly mixed reactor at temperatures from 200 to 300 °C. The results showed that dependence of the specific activity of the catalyst on temperature followed the Arrhenius law. CO2 conversion to methane was shown to depend on temperature, water vapor pressure and CO2:H2 ratio in the gas mixture. The Ru/Al2O3 catalyst was later tested together with the K2CO3/Al2O3 composite sorbent in the novel direct air capture/methanation process, which combined in one reactor consecutive steps of CO2 adsorption from the air at room temperature and CO2 desorption/methanation in H2 flow at 300 or 350 °C. It was demonstrated that the amount of desorbed CO2 was practically the same for both temperatures used, while the total conversion of carbon dioxide to methane was 94.2–94.6% at 300 °C and 96.1–96.5% at 350 °C.  相似文献   

9.
Herein, we explore how OH groups on Pt/γ-AlOOH and Pt/γ-Al2O3 catalysts affect CO2 hydrogenation with H2 at temperatures from 250°C to 400°C. OH groups are abundant on γ-AlOOH, but rare at Pt-(γ-AlOOH) interface which is the most favorable site for CO2 conversion on Pt/γ-AlOOH. This makes CO2 hydrogenation on Pt/γ-AlOOH form CO weakly bonding to γ-AlOOH, which prefers to desorption from Pt/γ-AlOOH rather than further conversion, thus enhancing CO production on Pt/γ-AlOOH. Different from Pt/γ-AlOOH, OH groups are abundant at Pt-(γ-Al2O3) interface which is the most favorable site for CO2 conversion on Pt/γ-Al2O3. This promotes CO2 hydrogenation on Pt/γ-Al2O3 to form CO strongly bonding to Pt, which prefers to further hydrogenation to CH4, and thereby increases CH4 selectivity on Pt/γ-Al2O3. Therefore, the OH groups at metal-support interface are crucial factor influencing product distribution, and must be considered seriously when fabricating catalysts.  相似文献   

10.
Colloidal 5.1 wt% Ru/γ-Al2O3 catalyst was prepared by a microwave assisted, solvothermal reduction of RuCl3 in ethylene glycol in the presence of γ-Al2O3. The catalyst subjected to heat-treatment in hydrogen up to 700 °C, was characterized by BET, XRD, TEM and H2 chemisorption. As-prepared catalyst contained Ru nanoparticles with mean size of 1.5 nm and narrow size distribution uniformly distributed over the support. The nanoparticles were stable on the alumina to 500 °C, but treatment at 600–700 °C caused some sintering of Ru due to migration and coalescence of a part of smallest ruthenium nanoparticles. However, even after H2 treatment at 700 °C, large amount of Ru nanoparticles with sizes of 1–3 nm remained in the catalyst. H2 chemisorption data revealed decrease of Ru dispersion from 0.28 to 0.19 by hydrogen treatment at 700 °C and were in good correspondence with TEM results. On the contrary, mean crystallite sizes obtained from XRD were strongly overestimated.  相似文献   

11.
The metal oxides modified Ni/γ-Al2O3 catalysts for glycerol steam reforming were prepared by impregnation. Characterization results of fresh catalysts indicated that the molybdates modification abated the acidity and the stronger metal-support interaction of Ni/γ-Al2O3 catalysts, leading to a stable catalytic activity. Especially, NiMoLa-CaMg/γ-Al2O3 (NiMoLa/CMA) catalyst exhibited no deactivation along with glycerol complete conversion to stable gaseous products containing 69% H2, 20% CO and 10% CO2 during time-on-stream of 42 h. TPO of spent Ni/γ-Al2O3 catalysts modified by different components showed that the carbon deposit on acidic sites and NiAl2O4 species led to catalysts deactivation. A lower reforming temperature and a higher LHSV and glycerol content were helpful to the production of syngas from GSR over NiMoLa/CMA; the reverse conditions would improve the formation of H2.  相似文献   

12.
13.
The selective CO methanation (CO-SMET) process via Ru?CAl2O3 catalysts was investigated as a tool for complete CO removal in fuel processors, when the H2-rich gas so produced is employed for PEM-FCs applications to vehicles, boats, yachts and residential co-generators. CO-SMET seems, in fact, to be a good alternative to the most widely used CO preferential oxidation (CO-PROX) process. The performance of Ru-based catalysts on alumina carrier for efficient CO removal through CO-SMET was studied, exploring the role of two different Ru precursors (chloride and nitrate), and the doping effect of chloride and of Ru load (1%, 3% and 5%). First, two catalytic families (Ru?CAl2O3_Cl and Ru?CAl2O3_NO3) were prepared by incipient wetness impregnation of alumina powder synthesized via solution combustion synthesis, by varying the Ru load. Then, based on the best obtained results, a third catalytic family was prepared adding chloride to Ru?CAl2O3_NO3 catalysts by impregnation. The CO removal performance was determined at catalyst powder level in a fixed bed micro reactor. Better performances were exhibited when Ru was deposited from chloride precursor, but the post-addition of chlorine to fresh Ru?CAl2O3 catalysts prepared with nitrate precursor tremendously improved their selectivity toward CO methanation. In particular, with both 1% and 3% Ru?CAl_NO3 catalyst chlorine doped, complete CO conversion was reached in a proper temperature range where the CO2 methanation was suitably kept at a low acceptable level.  相似文献   

14.
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques—N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis—were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn4+ species was observed for the most stable catalyst.  相似文献   

15.
The reaction behavior and mechanistic aspects of the selective methanation of CO over two supported Ru catalysts, a Ru/zeolite catalyst and a Ru/Al2O3 catalyst, in CO2 containing reaction gas mixtures were investigated by temperature-screening measurements, kinetic measurements and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements. The influence of other components present in realistic reformate gases, such as H2O and high amounts of CO2, on the reaction behavior was evaluated via measurements in increasingly realistic gas mixtures. Temperature screening and kinetic measurements revealed a high activity of both catalysts, with the Ru mass-normalized activity of the Ru/zeolite catalyst exceeding that of the Ru/Al2O3 catalyst by about one order of magnitude. Approaching more realistic conditions, the conversion–temperature curve was shifted slightly upwards for the Ru/Al2O3 catalyst, whereas for the Ru/zeolite catalyst it remained unaffected. The selectivity was highest for the Ru/zeolite catalyst, where in parallel to full conversion of CO the conversion of CO2 remained below 10% over a 40 °C temperature window. During selective methanation on the Ru/Al2O3 catalyst, CO2 was converted even though CO was not completely removed from the feed. Transient DRIFTS measurements, following the build-up and decomposition of adsorbed surface species in different reaction atmospheres and in the corresponding CO-free gas mixtures, respectively, provide information on the formation and removal/stability of the respective adsorbed species and, by comparison with the kinetic data, on their role in the reaction mechanism. Consequences on the mechanism and physical reasons underlying the observed selectivity are discussed.  相似文献   

16.
Selective CO methanation (CO-SMET) as a strategy for complete CO removal in fuel processing applications was investigated over Ru-based catalysts. The CO-SMET, in fact, seems to be a good alternative to the CO preferential oxidation (CO-PROX) for the applications on polymer electrolyte membrane fuel cells (PEM FCs) to transportation vehicles, boats, yachts and residential co-generators, as a CO-SMET reactor is inherently easier to control than the CO-PROX one. The present paper deals with the study on complete removal of CO in H2-rich gas stream through CO-SMET over Ru-based catalysts supported on γAl2O3 carrier. All the catalysts, loaded with 3%, 4% and 5% Ru, respectively, were prepared by a conventional impregnation method and their CO removal performance was determined at the powder level in a fixed bed reactor. Starting from a synthetic reformate mixture of 0.5% CO, 40% H2, 18% CO2, 15% H2O in He, the obtained results showed that CO complete conversion (residual outlet concentration lower than 2 ppmv, the analytical detection limit) was reached in a suitable temperature range where simultaneously both the CO2 methanation was kept at a low level and the reverse water gas shift reaction was negligible. The best results were obtained with 4% Ru–γAl2O3 in the range of 300–340 °C.  相似文献   

17.
The influence of Co addition on the activity and selectivity of Rb-promoted Mo2C/α-Al2O3 catalysts in CO hydrogenation was explored. The reaction was performed in a fixed-bed reactor system operating at 573 K, 30 bar, and CO/H2 ratio of 1. Addition of Co enhanced the production rates of hydrocarbons and higher alcohols over Rb-promoted Mo2C/α-Al2O3 by about 60 % without significantly increasing the production rate of methanol, thus shifting the alcohol selectivity toward larger molecules. The addition of Co also lessened the negative impact of CO conversion on oxygenate selectivity over Rb-promoted Mo2C/α-Al2O3. Results from X-ray absorption spectroscopy revealed that highly dispersed Co and Mo domains remained more reduced in the bimetallic carbide samples than the corresponding monometallic samples.  相似文献   

18.
We prepared various Ru catalysts supported on different supports such as yttria-stabilized zirconia (YSZ), ZrO2, TiO2, SiO2 and γ-Al2O3 with a wet impregnation method. We applied them to the selective CO removal in a hydrogen-rich stream via the preferential CO oxidation (PROX) and the selective CO methanation simultaneously. Among them, Ru/YSZ showed the highest CO conversion especially at low temperatures. Several measurements: the N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), the CO chemisorptions, the temperature-programmed oxidation (TPO), the temperature-programmed reduction (TPR), the temperature-programmed desorption (TPD) of CO2 with mass spectroscopy and the transmission electron microscopy (TEM), were conducted to characterize the catalysts. No linear correlation can be found between the amount of CO chemisorbed at 300 K and the PROX activity. On the other hand, the facile activation of O2 appeared to be closely related to the high PROX activity, judging by the TPO experiment. In addition, the strong adsorption of CO2 suppressed the low-temperature PROX activity. Ru/YSZ can be easily oxidized and also reduced at low temperatures. It is found that Ru/YSZ uptakes only small amounts of CO2, which can be desorbed at low temperatures. Ru/YSZ can reduce the high inlet CO concentration to be less than 10 ppm even in the presence of H2O and CO2.  相似文献   

19.
Pt/γ-Al2O3 catalysts were prepared by two different impregnation methods and characterized by XRD, TEM, and CO chemisorption. The Pt particle sizes ranged in 2.4–23.3 nm for these 5.0 wt% Pt/γ-Al2O3 catalysts. The catalysts were also characterized by FT-IR spectroscopy using CO as a probe molecule before and after the chiral modification with cinchonidine. Two IR bands (2078 and 2060 cm-1) due to CO linearly adsorbed on the Pt/γ-Al2O3 catalyst, calcined at 500 °C before reduction in sodium formate solution were observed, whereas only one IR band at ~2070 cm-1 was observed for other catalysts. A red shift of the IR band was observed after chiral modification of all the catalysts, except the one with the largest Pt particle size and lowest Pt dispersion. The catalytic performance of the cinchonidine-modified Pt/γ-Al2O3 catalysts was tested for the enantioselective hydrogenations of ethyl pyruvate and ethyl 2-oxo-4-phenylbutyrate (EOPB). A 95% ee value was obtained for the ethyl pyruvate hydrogenation and about 83% ee was achieved for the enantioselective hydrogenation of EOPB under the optimized preparation and reaction conditions. It is deduced that the interaction of Pt with γ-Al2O3 is a crucial factor for obtaining high activity and that the adsorption abilities (adsorption of reactant, solvent and chiral modifier molecules) of the catalyst surface affect the catalytic performance significantly.  相似文献   

20.
The vapour phase hydrogenation of cinnamaldehyde over Ni loading γ-Al2O3 catalysts was performed at 1 atm and 300 °C in a fixed-bed reactor. The major product was hydrocinnamaldehyde. Unexpected products of styrene and ethylbenzene due to new reaction pathway of hydrodeformylation were observed. The results indicated that Ni metal was the active centers and the catalytic activity was parallel to the Ni surface area. The stability of TOF values implied that the cinnamaldehyde hydrogenation over Ni/γ-Al2O3 catalysts was a structure insensitive reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号