首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many studies have shown that intersections are among the most dangerous locations of a roadway network. Therefore, there is a need to understand the factors that contribute to injuries at such locations. This paper addresses the different factors that affect crash injury severity at signalized intersections. It also looks into the quality and completeness of the crash data and the effect that incomplete data has on the final results. Data from multiple sources have been cross-checked to ensure the completeness of all crashes including minor crashes that are usually unreported or not coded into crash databases. The ordered probit modeling technique has been adopted in this study to account for the fact that injury levels are naturally ordered variables. The tree-based regression methodology has also been adopted in this study to explore the factors that affect each severity level. The probit model results showed that a combination of crash-specific information and intersection characteristics result in the highest prediction rate of injury level. More specifically, having a divided minor roadway or a higher speed limit on the minor roadway decreased the level of injury while crashes involving a pedestrian/bicyclist and left turn crashes had the highest probability of a more severe crash. Several regression tree models showed a difference in the significant factors that affect the different severity types. Completing the data with minor non injury crashes improved the modeling results and depicted differences when modeling the no injury crashes.  相似文献   

2.
Using a comprehensive database of police-reported accidents in Hawaii, we describe the nature of pedestrian accidents over the period 2002–2005. Approximately 36% of the accidents occur in residential areas, while another 34% occur in business areas. Only 41.7% of the pedestrian accidents occur at intersections. More pedestrian crashes occur at non-intersection locations—including midblock locations, driveways, parking lots, and other off roadway locations. Approximately 38.2% of the crashes occur at crosswalk locations, while proportionately more (61.8%) of the pedestrian accidents occur at non-crosswalk locations. Using this database the human, temporal, roadway, and environmental factors associated with being “at-fault” for both pedestrians and drivers are also examined. Using techniques of logistic regression, several different explanatory models are constructed, to identify the factors associated with crashes producing fatalities and serious injuries. Finally, two pedestrian models (drunk males and young boys) and one driver model (male commuters) are developed to provide further understanding of pedestrian accident causation. Drunk male pedestrians who were jaywalking were in excess of 10× more likely than other groups to be at-fault in pedestrian accidents. Young boys in residential areas were also more likely to be at-fault. Male commuters in business areas in the morning were also found to have higher odds of being classified at-fault when involved in pedestrian accidents. The results of this study indicate that there should be a combination of enforcement and educational programs implemented for both the pedestrian and drivers to show those at-fault the consequences of their actions, and to reduce the overall number of accidents.  相似文献   

3.
This research examined how environmental attributes near intersections influence the perceived crash risk among school-aged children, which provides information on the potential risks of pedestrian crashes that can guide the development of proactive countermeasures. In a sample of 799 children aged 10–12 years old in Korea, the environmental attributes of intersections perceived as having a high risk of producing crashes near elementary schools were investigated using standard negative binomial and zero-inflated negative binomial models.The results showed that a higher number of student crossings, a wider road width, the presence of crosswalks, student-friendly facilities at the intersection, and four-way intersections were significant and positively associated with perceived crash risk among school-aged children. The findings related to building characteristics indicated that a higher number of entrances at an intersection increased the perceived crash risk while higher visibility at the intersection reduced the perception of risk. Associations with traffic-calming measures were weak,suggesting that the measures used in the study areas were not effective in reducing the perceived crash risk. The results of a police-reported crash model showed that school-aged children have a relatively accurate perception of crash risk and that the perceived crash risk of school-aged children may provide valuable information on the intersection characteristics in need of attention near school sites.  相似文献   

4.
This study investigates the effect of spatial correlation using a Bayesian spatial framework to model pedestrian and bicycle crashes in Traffic Analysis Zones (TAZs). Aggregate models for pedestrian and bicycle crashes were estimated as a function of variables related to roadway characteristics, and various demographic and socio-economic factors. It was found that significant differences were present between the predictor sets for pedestrian and bicycle crashes. The Bayesian Poisson-lognormal model accounting for spatial correlation for pedestrian crashes in the TAZs of the study counties retained nine variables significantly different from zero at 95% Bayesian credible interval. These variables were – total roadway length with 35 mph posted speed limit, total number of intersections per TAZ, median household income, total number of dwelling units, log of population per square mile of a TAZ, percentage of households with non-retired workers but zero auto, percentage of households with non-retired workers and one auto, long term parking cost, and log of total number of employment in a TAZ. A separate distinct set of predictors were found for the bicycle crash model. In all cases the Bayesian models with spatial correlation performed better than the models that did not account for spatial correlation among TAZs. This finding implies that spatial correlation should be considered while modeling pedestrian and bicycle crashes at the aggregate or macro-level.  相似文献   

5.
This study attempts to explore the viability of dual-state models (i.e., zero-inflated and hurdle models) for traffic analysis zones (TAZs) based pedestrian and bicycle crash frequency analysis. Additionally, spatial spillover effects are explored in the models by employing exogenous variables from neighboring zones. The dual-state models such as zero-inflated negative binomial and hurdle negative binomial models (with and without spatial effects) are compared with the conventional single-state model (i.e., negative binomial). The model comparison for pedestrian and bicycle crashes revealed that the models that considered observed spatial effects perform better than the models that did not consider the observed spatial effects. Across the models with spatial spillover effects, the dual-state models especially zero-inflated negative binomial model offered better performance compared to single-state models. Moreover, the model results clearly highlighted the importance of various traffic, roadway, and sociodemographic characteristics of the TAZ as well as neighboring TAZs on pedestrian and bicycle crash frequency.  相似文献   

6.
While the conventional approach to safety planning has emphasized crash analysis with police-reported crash information, transportation professionals increasingly recognize the importance of proactively identifying potential crash risk and considering environmental characteristics. In a proactive approach, individuals’ perception of crash risk provides important information in identifying potential crash risk. As built environment characteristics influence the levels of pedestrian and bicycle safety, this study examined how perceived and actual crash risk are related with each other and with respect to built environmental characteristics. Our results showed that residents who live in low density-single residential neighborhoods are more likely to perceive their neighborhood as dangerous relative to residents of compact, mixed-use neighborhoods even though the latter exhibited higher actual crash rates. The results of path analyses confirmed that a simultaneous but opposite relationship exists between perceived and actual crash risks. Our results indicate that higher actual crash risk increases perceived crash risk, while higher perceived crash risk is negatively associated to actual crash rates. Consequently, low density and non-mixed land uses increase individuals perception of crash risk, and increased perception of risk and unfriendly environment for pedestrian and bikers reduces actual crash rates as a result of behavioral changes. From a policy standpoint, more attention and proactive interventions are desirable in suburban areas beyond the areas with high crash rates, as some of these areas have high-perceived risks.  相似文献   

7.
Urban expressway systems have been developed rapidly in recent years in China; it has become one key part of the city roadway networks as carrying large traffic volume and providing high traveling speed. Along with the increase of traffic volume, traffic safety has become a major issue for Chinese urban expressways due to the frequent crash occurrence and the non-recurrent congestions caused by them. For the purpose of unveiling crash occurrence mechanisms and further developing Active Traffic Management (ATM) control strategies to improve traffic safety, this study developed disaggregate crash risk analysis models with loop detector traffic data and historical crash data. Bayesian random effects logistic regression models were utilized as it can account for the unobserved heterogeneity among crashes. However, previous crash risk analysis studies formulated random effects distributions in a parametric approach, which assigned them to follow normal distributions. Due to the limited information known about random effects distributions, subjective parametric setting may be incorrect. In order to construct more flexible and robust random effects to capture the unobserved heterogeneity, Bayesian semi-parametric inference technique was introduced to crash risk analysis in this study. Models with both inference techniques were developed for total crashes; semi-parametric models were proved to provide substantial better model goodness-of-fit, while the two models shared consistent coefficient estimations. Later on, Bayesian semi-parametric random effects logistic regression models were developed for weekday peak hour crashes, weekday non-peak hour crashes, and weekend non-peak hour crashes to investigate different crash occurrence scenarios. Significant factors that affect crash risk have been revealed and crash mechanisms have been concluded.  相似文献   

8.
Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai – the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0–1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety.  相似文献   

9.
10.
This study presents a novel approach for analysis of patterns in severe crashes that occur on mid-block segments of multilane highways with partially limited access. A within stratum matched crash vs. non-crash classification approach is adopted towards that end. Under this approach crashes serve as units of analysis and it does not require aggregation of crash data over arterial segments of arbitrary lengths. Also, the proposed approach does not use information on non-severe crashes and hence is not affected by under-reporting of the minor crashes. Random samples of time, day of week, and location (i.e., milepost) combinations were collected for multilane arterials in the state of Florida and matched with severe crashes from the corresponding corridor to form matched strata consisting of severe crash and non-crash cases. For these cases, geometric design/roadside and traffic characteristics were derived based on the corresponding milepost locations. Four groups of crashes, severe rear-end, lane-change related, pedestrian, and single-vehicle/off-road crashes, on multilane arterials segments were compared separately to the non-crash cases. Severe lane-change related crashes may primarily be attributed to exposure while single-vehicle crashes and pedestrian crashes have no significant relationship with the ADT (Average Daily Traffic). For severe rear-end crashes speed limit, ADT, K-factor, time of day/day of week, median type, pavement condition, and presence of horizontal curvature were significant factors. The proposed approach uses general roadway characteristics as independent variables rather than event-specific information (i.e., crash characteristics such as driver/vehicle details); it has the potential to fit within a safety evaluation framework for arterial segments.  相似文献   

11.
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.  相似文献   

12.
The objective of this study is to identify high risk factors that are closely related to repeat DUI crashes using readily available information from the state crash records. Survival analysis was used and a Cox proportional hazards model was developed using the police-reported crash records in the state of Louisiana. A variety of variables were found to be significant in predicting repeat DUI crashes. The factors included the characteristics of the drivers (gender, race, and age), the types of the vehicle (light truck/pick up truck or other), the characteristics of the crash (hit-and-run, driver violations, and whether the driver is arrested), the type of location (residential area or other), and the characteristics of the roadway (highway type and roadway type). This study provides a comprehensive picture of the repeat DUI crashes. The model can quantitatively predict the relative hazards of repeat DUI crashes. It can be used to identify the characteristics of the crash-involved DUI drivers who are at greatest risk of being involved in a subsequent DUI crash, allowing to apply appropriate remedial measures to reduce the risk.  相似文献   

13.
The purpose of this study was to investigate motorcycle-to-barrier crash frequency on horizontally curved roadway sections in Washington State using police-reported crash data linked with roadway data and augmented with barrier presence information. Data included 4915 horizontal curved roadway sections with 252 of these sections experiencing 329 motorcycle-to-barrier crashes between 2002 and 2011. Negative binomial regression was used to predict motorcycle-to-barrier crash frequency using horizontal curvature and other roadway characteristics. Based on the model results, the strongest predictor of crash frequency was found to be curve radius. This supports a motorcycle-to-barrier crash countermeasure placement criterion based, at the very least, on horizontal curve radius. With respect to the existing horizontal curve criterion of 820 feet or less, curves meeting this criterion were found to increase motorcycle-to-barrier crash frequency rate by a factor of 10 compared to curves not meeting this criterion. Other statistically significant predictors were curve length, traffic volume and the location of adjacent curves. Assuming curves of identical radius, the model results suggest that longer curves, those with higher traffic volume, and those that have no adjacent curved sections within 300 feet of either curve end would likely be better candidates for a motorcycle-to-barrier crash countermeasure.  相似文献   

14.
This study analyzes vehicle-pedestrian crashes at intersections in Florida over 4 years, 1999-2002. The study identifies the group of drivers and pedestrians, and traffic and environmental characteristics that are correlated with high pedestrian crashes using log-linear models. The study also estimates the likelihood of pedestrian injury severity when pedestrians are involved in crashes using an ordered probit model. To better reflect pedestrian crash risk, a logical measure of exposure is developed using the information on individual walking trips in the household travel survey. Lastly, the impact of average traffic volume on pedestrian crashes is examined. As a result of the analysis, it was found that pedestrian and driver demographic factors, and road geometric, traffic and environment conditions are closely related to the frequency and injury severity of pedestrian crashes. Higher average traffic volume at intersections increases the number of pedestrian crashes; however, the rate of increase is steeper at lower values of average traffic volume. Based on the findings in the analysis, some countermeasures are recommended to improve pedestrian safety.  相似文献   

15.
Identifying and ranking high pedestrian crash zones plays a key role in developing efficient and effective strategies to enhance pedestrian safety. This paper presents (1) a Geographical Information Systems (GIS) methodology to study the spatial patterns of pedestrian crashes in order to identify high pedestrian crash zones, and (2) an evaluation of methods to rank these high pedestrian crash zones. The GIS based methodology to identify high pedestrian crash zones includes geocoding crash data, creating crash concentration maps, and then identifying high pedestrian crash zones. Two methods generally used to create crash concentration maps based on density values are the Simple Method and the Kernel Method. Ranking methods such as crash frequency, crash density, and crash rate, as well as composite methods such as the sum-of-the-ranks and the crash score methods are used to rank the selected high pedestrian crash zones. The use of this methodology and ranking methods for high pedestrian crash zones are illustrated using the Las Vegas metropolitan area as the study area. Crash data collected for a 5-year period (1998-2002) were address matched using the street name/reference street name intersection location reference system. A crash concentration map was then created using the Kernel Method as it facilitates the creation of a smooth density surface when compared to the Simple Method. Twenty-two linear high crash zones and seven circular high crash zones were then identified. The GIS based methodology reduced the subjectivity in the analysis process. Results obtained from the evaluation of methods to rank high pedestrian crash zones show a significant variation in ranking when individual methods were considered. However, rankings of high pedestrian crash zones were relatively consistent with little to no variation when the sum-of-the-ranks method and the crash score method were used. Thus, these composite methods are recommended for use in ranking high pedestrian crash zones instead of individual methods.  相似文献   

16.
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.  相似文献   

17.
Although past research has linked alcohol outlet density to higher rates of drinking and many related social problems, there is conflicting evidence of density's association with traffic crashes. An abundance of local alcohol outlets simultaneously encourages drinking and reduces driving distances required to obtain alcohol, leading to an indeterminate expected impact on alcohol-involved crash risk. This study separately investigates the effects of outlet density on (1) the risk of injury crashes relative to population and (2) the likelihood that any given crash is alcohol-involved, as indicated by police reports and single-vehicle nighttime status of crashes. Alcohol outlet density effects are estimated using Bayesian misalignment Poisson analyses of all California ZIP codes over the years 1999–2008. These misalignment models allow panel analysis of ZIP-code data despite frequent redefinition of postal-code boundaries, while also controlling for overdispersion and the effects of spatial autocorrelation. Because models control for overall retail density, estimated alcohol-outlet associations represent the extra effect of retail establishments selling alcohol. The results indicate a number of statistically well-supported associations between retail density and crash behavior, but the implied effects on crash risks are relatively small. Alcohol-serving restaurants have a greater impact on overall crash risks than on the likelihood that those crashes involve alcohol, whereas bars primarily affect the odds that crashes are alcohol-involved. Off-premise outlet density is negatively associated with risks of both crashes and alcohol involvement, while the presence of a tribal casino in a ZIP code is linked to higher odds of police-reported drinking involvement. Alcohol outlets in a given area are found to influence crash risks both locally and in adjacent ZIP codes, and significant spatial autocorrelation also suggests important relationships across geographical units. These results suggest that each type of alcohol outlet can have differing impacts on risks of crashing as well as the alcohol involvement of those crashes.  相似文献   

18.
This paper presents a spatial and temporal analysis of child pedestrian crash data in Santiago, Chile during the period 2000–2008. First, this study identified seven critical areas with high child pedestrian crash risk employing kernel density estimation, and subsequently, statistically significant clusters of the main attributes associated to these crashes in each critical area were determined in a geographic information systems environment. Moran's I index test identified a positive spatial autocorrelation on crash contributing factors, time of day, straight road sections and intersections, and roads without traffic signs within the critical areas during the studied period, whereas a random spatial pattern was identified for crashes related to the age attribute. No statistical significance in the spatial relationship was obtained in child pedestrian crashes with respect to gender, weekday, and month of the year. The results from this research aid in determining the areas in which enhanced school-age child pedestrian safety is required by developing and implementing effective enforcement, educational, and engineering preventive measures.  相似文献   

19.
In recent years, there has been a renewed interest in applying statistical ranking criteria to identify sites on a road network, which potentially present high traffic crash risks or are over-represented in certain type of crashes, for further engineering evaluation and safety improvement. This requires that good estimates of ranks of crash risks be obtained at individual intersections or road segments, or some analysis zones. The nature of this site ranking problem in roadway safety is related to two well-established statistical problems known as the small area (or domain) estimation problem and the disease mapping problem. The former arises in the context of providing estimates using sample survey data for a small geographical area or a small socio-demographic group in a large area, while the latter stems from estimating rare disease incidences for typically small geographical areas. The statistical problem is such that direct estimates of certain parameters associated with a site (or a group of sites) with adequate precision cannot be produced, due to a small available sample size, the rareness of the event of interest, and/or a small exposed population or sub-population in question. Model based approaches have offered several advantages to these estimation problems, including increased precision by "borrowing strengths" across the various sites based on available auxiliary variables, including their relative locations in space. Within the model based approach, generalized linear mixed models (GLMM) have played key roles in addressing these problems for many years. The objective of the study, on which this paper is based, was to explore some of the issues raised in recent roadway safety studies regarding ranking methodologies in light of the recent statistical development in space-time GLMM. First, general ranking approaches are reviewed, which include na?ve or raw crash-risk ranking, scan based ranking, and model based ranking. Through simulations, the limitation of using the na?ve approach in ranking is illustrated. Second, following the model based approach, the choice of decision parameters and consideration of treatability are discussed. Third, several statistical ranking criteria that have been used in biomedical, health, and other scientific studies are presented from a Bayesian perspective. Their applications in roadway safety are then demonstrated using two data sets: one for individual urban intersections and one for rural two-lane roads at the county level. As part of the demonstration, it is shown how multivariate spatial GLMM can be used to model traffic crashes of several injury severity types simultaneously and how the model can be used within a Bayesian framework to rank sites by crash cost per vehicle-mile traveled (instead of by crash frequency rate). Finally, the significant impact of spatial effects on the overall model goodness-of-fit and site ranking performances are discussed for the two data sets examined. The paper is concluded with a discussion on possible directions in which the study can be extended.  相似文献   

20.
Severe crashes are causing serious social and economic loss, and because of this, reducing crash injury severity has become one of the key objectives of the high speed facilities’ (freeway and expressway) management. Traditional crash injury severity analysis utilized data mainly from crash reports concerning the crash occurrence information, drivers’ characteristics and roadway geometric related variables. In this study, real-time traffic and weather data were introduced to analyze the crash injury severity. The space mean speeds captured by the Automatic Vehicle Identification (AVI) system on the two roadways were used as explanatory variables in this study; and data from a mountainous freeway (I-70 in Colorado) and an urban expressway (State Road 408 in Orlando) have been used to identify the analysis result's consistence. Binary probit (BP) models were estimated to classify the non-severe (property damage only) crashes and severe (injury and fatality) crashes. Firstly, Bayesian BP models’ results were compared to the results from Maximum Likelihood Estimation BP models and it was concluded that Bayesian inference was superior with more significant variables. Then different levels of hierarchical Bayesian BP models were developed with random effects accounting for the unobserved heterogeneity at segment level and crash individual level, respectively. Modeling results from both studied locations demonstrate that large variations of speed prior to the crash occurrence would increase the likelihood of severe crash occurrence. Moreover, with considering unobserved heterogeneity in the Bayesian BP models, the model goodness-of-fit has improved substantially. Finally, possible future applications of the model results and the hierarchical Bayesian probit models were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号