共查询到19条相似文献,搜索用时 78 毫秒
1.
分析了模糊聚类中的FCM(Fuzzy C—Means)算法,利用该算法对一个TCP连接日志的抽样数据进行聚类,利用聚类中心对任选的两组数据集进行分类,并对聚类结果进行了分析。 相似文献
2.
模糊C-均值(FCM)聚类算法的实现 总被引:11,自引:0,他引:11
传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇.然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起.给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题.另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤.最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性. 相似文献
3.
4.
关于模糊C-均值(FCM)聚类算法的改进 总被引:3,自引:0,他引:3
针对模糊C-均值(FCM)聚类算法的容易收敛于局部极值的不足,提出了一种改进的模糊FCM聚类算法,此新算法在聚类中心选取和优化过程中进行了充分的考虑,是一种用于确定最佳聚类数的聚类算法,并且利用了分阶段思想,结合动态直接聚类算法和标准聚类算法,来尽量避免模糊C-均值(FCM)聚类算法的不足。新算法与传统(FCM)聚类算法方法相比,提高了算法的寻优能力,并且迭代次数更少,在准确度上也有较大的提高,具有很好的实际应用价值。 相似文献
5.
FCM算法是目前广泛使用的算法之一。,针对FCM聚类质量和收敛速度依赖于初始聚类中心的问题,结合Canopy聚类算法能够粗略快速地对数据集进行聚类的优点,提出了一种基于Canopy聚类的FCM算法。该算法通过将Canopy算法快速获取到的聚类中心作为FCM算法的输入来加快FCM算法收敛速度。并在云环境下设计了其MapReduce化方案,实验结果表明,MapReduce化的基于Canopy聚类的FCM算法比MapReduce化的FCM聚类算法具有更好的聚类质量和运行速度。 相似文献
6.
分析了Fuzzy C-Means算法中模糊指标m→1+和m→∞对隶属函数的模糊控制作用,据此提出一种带模糊指标的隶属函数,具有性质:(1)一个数据点对各个模式的隶属度和为1;(2)模糊指标m控制模糊程度。使用Iris数据集对样板法中新旧两种隶属函数做了实验对比。 相似文献
7.
Wei和Fahn提出了用多触突神经网络结构解决有条件限制的优化问题,可以包括高次方、对数、正弦等形式,并提出了基于。FBACN结构的模糊C均值聚类算法(FCM)的实现方式,但是可以证明上述实现方式与其对应的FCM算法并不等价。数值实验结果也说明FBACN算法的结果与与其对应的FCM算法的聚类结果并不相同。因此.Wet和Fahn提出的用多触突神经网络结构解决有条件限制的优化问题的方法是一种新的聚类方法。 相似文献
8.
9.
聚类分析在模式识别和图像处理领域中有着极为重要的意义和广泛的应用前景。常用的聚类分析的方法是模糊C均值算法(FCM),但是FCM算法容易陷入局部最优解。提出一种基于FCM和遗传算法对图像进行模糊聚类分析的方法。对输入图像进行纹理特征提取,通过主成分分析法对提取的特征向量进行降维处理,降低图像聚类分析算法的复杂度,提高结果的精确度,结合FCM和遗传算法对图像数据进行模糊聚类分析。实验结果表明该方法可以得到较好的分类效果。 相似文献
10.
给出了一种新的无监督聚类算法,但这种算法并非是基于目标函数的聚类算法,而是对数据直接设计一种迭代运算,以使数据在保持类特征的情况下进行重新组合最终达到分类的目的。通过对一类数据的实验表明,该算法在无监督给出类数方面具有较好的鲁棒性;另外,该算法在数据的准确归类、无监督聚类、确定性,以及对特殊类分布的适用性等方面均优于HCM和FCM算法, 相似文献
11.
针对传统的聚类集成算法难以高效地处理海量数据的聚类分析问题,提出一种基于MapReduce的并行FCM聚类集成算法。算法利用随机初始聚心来获取具有差异化的聚类成员,通过建立聚类成员簇间OVERLAP矩阵来寻找逻辑等价簇,最后利用投票法共享聚类成员中数据对象的分类情况得出最终的聚类结果。实验证明,该算法具有良好的精确度,加速比和扩展性,具有处理较大规模数据集的能力。 相似文献
12.
对传统FCM算法的隶属度函数进行了改进,改进后的算法有效降低了孤立点对图像数据聚类结果的影响。通过灰度-梯度共生矩阵对图像进行纹理特征提取,利用主分量分析法对提取后的图像高维特征进行降维处理,结合本文改进的FCM图像聚类算法对预处理后的图像数据进行聚类。实验证明,该方法具有较好的聚类效果,且能以较少的迭代次数达到全局最优。 相似文献
13.
FCM聚类算法对初始值敏感,不良的初始值会导致算法的收敛速度过慢和收敛到局部极值。将FEM算法用于图像分割处理时,初始值的选择是一个难点。文中提出了一种使用自适应初始值的FCM聚类图像分割算法,该方法利用图像的直方图特性建立候选聚类中心集,通过初始化准则函数检验候选集得到合适的聚类中心和聚类数目,并根据最大隶属度原则分割图像,得到了较好的分割效果。理论分析和实验表明文中方法收敛速度快,分割准确,自适应性很强。 相似文献
14.
15.
16.
17.
阐述了现有各种嵌入式系统的互联网接入方案,分析和比较了各种接入方式的优缺点后,重点阐述了一种基于TCP/IP的智能终端接入技术方案。 相似文献
18.
基于特征加权的自然纹理FCM聚类分割算法 总被引:2,自引:0,他引:2
为了实现自然材质的纹理分割,根据自然纹理的弱规则性特点,提出一种由图像灰度值、灰度分布统计及图像纹理能量统计作为纹理表征的特征参数,并组成三维特征矢量以实现自然纹理分割的算法。考虑到样本不同特征值对分类的不同影响,算法中引入了特征加权的FCM模糊聚类方法以提高各特征参数在聚类约束力上的可控制性,从而实现纹理图像的更有效分割效果。实验证明,该方法简单高效、可控性强,对各种自然纹理图像具有较好的纹理分割效果。 相似文献
19.
针对传统模糊C-均值(Fuzzy C-Means, FCM)聚类算法隐含假设各个样本和各维属性对聚类结果作用相同,导致算法聚类性能降低,以及对初始中心点敏感且易陷入局部最优的问题,提出一种基于改进蝙蝠算法优化的FCM聚类算法。该算法首先采用混沌映射和速度权重来改进蝙蝠算法,然后利用改进蝙蝠算法确定FCM算法的初始聚类中心,最后根据各个样本和各维属性对聚类结果作用不同,采用样本和属性加权法对FCM算法的目标函数重新设计。实验结果表明,改进算法表现出较好的聚类效果。 相似文献