首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Superconducting properties are evaluated for high-quality single crystals of Ba(Fe1−x Co x )2As2 in a wide range of doping levels. The critical current density, J c , in an optimally-doped crystal (T c ∼24 K) shows a fishtail effect with its value over 105 A/cm2 even at 5 T below 10 K. Magneto-optical imaging has clarified rather homogeneous supercurrent flow in the crystal, in spite of a large amount of impurities. In the heavy-ion irradiated sample, the presence of columnar defects are confirmed and J c has been enhanced by a factor of five at low temperatures, reaching 6×106 A/cm2 at 2 K under zero field. Flux creep rate in the heavy-ion irradiated sample has been reduced in accordance with the enhancement of J c .  相似文献   

2.
Superconducting bulks of MgB2 with addition of Sb2O3 and Sb with different stoichiometric compositions ((MgB2) + (Sb2O3) x , x = 0.0025, 0.005, 0.015, and (MgB2) + (Sb)y, y = 0.01) were obtained by the Spark Plasma Sintering (SPS) technique. All added samples have high density, above 95% and critical temperature, T c, of 38.1–38.6 K. This result and XRD data suggest that Sb does not enter the lattice of MgB2. Impurity phases are Mg3Sb2, MgO, and MgB4. The optimum addition is Sb2O3 for x = 0.005. This sample shows the critical current density, J c(5 K, 0 T) = 4 × 105 A/cm2 and J c(5 K, 7 T) = 6 × 102 A/cm2, while the irreversibility field, H irr (5 K, 100 A/cm2) = 8.23 T. Indicated values of J c and H irr are higher than for the pristine sample. The mechanism of J c and H irr increase in the Sb2O3 added samples is complex and composed of opposite effects most probably involving morphology elements, the presence of nano metric MgB4 and the indirect influence of oxygen or oxygen and Sb. Crystallite size of MgB2 is decreasing when Sb-based additions are introduced and the effect is stronger for the Sb-metal addition. The sample with Sb-metal addition does not improve J c and H irr when compared with pristine sample.  相似文献   

3.
Ca4-xMgxLa2Ti5O17 ceramics were prepared by a solid state ceramic route for x = 0, 0.5, 1, 2, 3 and 4. The structure and microstructure of the ceramics were investigated using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction results show that the Ca4-x Mg x La2Ti5O17 adopts an orthorhombic crystal structure with no secondary phase observed for x from 0 to 0.5. Secondary phase, MgTiO3 occurs with further increasing doping level (1 ≤ x ≤ 3). When x = 4, mixture phases La0.66TiO2.993, MgTiO3 and a trace of unknown phase coexist. Ca4La2Ti5O17 ceramic exhibits a relative permittivity (εr) ~ 65, quality factor (Q × f) ~13,338 GHz (at ~4.75 GHz), and temperature coefficient of resonant frequency (τ f ) ~ 165 ppm/°C. The sintering temperature was distinctly reduced from 1,580 °C for x = 0 to 1,350 °C for x = 4. With increasing Mg content, εr and τf obviously decrease, while Q × f value initially decreases and then increases. The ceramic for x = 2 shows εr ~ 50, Q × f ~ 9,451 and τ f  ~ 62.5 ppm/°C. By the complete replacement of Ca with Mg, Mg4La2Ti5O17 ceramic sintered at 1,350 °C for 4 h combines a high dielectric permittivity (ε r  = 31), high quality factor (Q × f ~ 15,021) and near-zero temperature coefficient of resonant frequency (τ f  ~ 4.0 ppm/°C). The materials are suitable for microwave applications.  相似文献   

4.
The LiCo1-xMgxO2 (x = 0–0.1) cathode materials for rechargeable lithium ion batteries were synthesized by starch assisted combustion route method. The structural characterization was carried out by X-ray powder diffraction and Laser Raman Spectroscopy. The sample exhibited a well-defined rhombohedral structure and the lattice parameters varied with the increasing magnesium contents. Surface morphology of the synthesized materials was determined by Scanning electron microscope. The cathode materials consist of highly-ordered single crystalline particles with spherical shape. The electrical resistivities of the samples were studied by Hall Effect. Electrical resistivities decrease with increase in magnesium content. Electrochemical properties were characterized by the assembled test cells using Galvanostatic discharge studies that were carried out at a current rate of 0.1 C. Magnesium doped LiCo0.95Mg0.05O2 show improved structural stability, high reversible capacity and excellent electrochemical performance.  相似文献   

5.
In this work, the effect of SnO2 nano-particles (40 nm) addition to the physical properties of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconducting phase was studied. (Bi, Pb)-2223 superconductor phase added by SnO2 nano-particles was prepared by a conventional solid-state reaction technique. The SnO2 nano-particles concentrations x varied from 0.0 to 2.0 wt% of the sample’s total mass. The prepared samples were investigated by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and electron dispersive spectroscopy (EDS) for analyzing phase formation and microstructure. Also, the electrical resistivity and transport critical current density, for investigated samples, were measured by standard dc four-probe method. Phase examination by XRD indicated that SnO2 nano-particles enhanced the (Bi, Pb)-2223 phase formation up to x=0.4 wt%. On the other hand, the high concentrations of SnO2 nano-particles retarded the phase formation. Granular investigation, from scanning electron microscope, showed that both number and size of voids decreased as x increased from 0.0 to 0.4 wt%. The superconducting transition temperature and transport critical current density were found to have optimal values at x=0.4 wt%. The enhancement rates in T c and J c were 12 and 58%, respectively, which had a maximum enhancement in both J c and T c for all investigated nano-particles.  相似文献   

6.
The microstructure of binary Al100−x –Mg x (x = 10, 15, 18 and 25 wt%) alloys after long anneals (600–4000 h) was studied between 210 and 440 °C. The transition from incomplete to complete wetting of Al/Al grain boundaries (GBs) by the second solid phase Al3Mg2 has been observed. The portion of completely wetted GBs increases with increasing temperature beginning from T wsmin = 220 °C. Above T wsmax = 410 °C all Al/Al GBs are completely wetted by the Al3Mg2 phase.  相似文献   

7.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

8.
Sn-doped δ-MnO2 (Sn-MnO2) hollow nanoparticles have been synthesized via chemical process at room temperature. Many characterizations have been carried out to fully identify the intrinsic information of the as-prepared samples and investigate their electrochemical properties. The results indicate that the morphologies of the samples can be adjusted by changing the concentration of Sn while the capacitance of Sn-MnO2 nanoparticles increased corresponded with that of the undoped δ-MnO2 nanoparticles. The specific capacitance of Sn(1 at.%)-MnO2 is up to 258.2 F g??1 at a current density of 0.1 A g??1. What’s more, over 90% of the initial specific capacitance still remains after 1000 cycles at a current density of 2.0 A g??1, displaying excellent cycling stability.  相似文献   

9.
Combined with thermal analysis and phase identification, the phase formation of Sn-doped MgB2 superconductor during the sintering process were systematically investigated. As compared to the sintering of MgB2, the first exothermal peak occurs at a lower temperature, which suggests the accelerated formation of MgB2 after minor Sn doping. The sintering process of minor Sn-doped MgB2 orderly underwent the melting of Sn, the reaction between Mg and Sn, the eutectic Mg–Sn reaction, the solid–solid Mg–B reaction, the melting of Mg, the liquid–solid Mg–B reaction and the Sn precipitation. Based on the phase formation mechanism, MgB2 bulks was successfully synthesized by Sn-activated sintering at 600 °C for only 5 h, exhibiting a dramatic decrease in the sintering time compared to the sintering of undoped MgB2.  相似文献   

10.
The effect of B2O3 addition on the superconducting transition and grain boundary critical current density of the boron free (control) and boron doped HTS ceramics with nominal composition YBa2Cu3B x O7−y (x=0, 0.025, 0.05, 0.075, 0.1 and 0.15) has been investigated. For the lowest-level boron doping (x=0.025) an increase by nearly 1.5 times was observed in the critical current density J c compared to the control sample. The small additives of boron in YBa2Cu3B x O7−y (x=0.025 and 0.05) do not essentially affect the critical temperature T c =92.5 K of nominally pure Y123. Higher-level boron added compounds revealed a decrease in both T c and J c values. The data obtained indicate the possibility of boron dopant being inserted either into interstitial or into substitutional sites of the lattice.  相似文献   

11.
In this study, four kinds of melt-processed YBCO samples were fabricated with the MPMG procedure. The compacted powders were located on a crucible with a buffer layer of Y2O3 to avoid liquid to spread on the furnace plate. Their microstructures were defined by XRD analysis and polarized light optical microscopy. The microstructure investigations indicated that the 123 grains were very big and fine and dispersed 211 particles remained in the samples. Resistivities of the samples were measured by a standard continuous dc four-probe method. Magnetization measurements were made and flux jumps were observed at a relatively higher temperature for Y1060. The critical current density, J c , values of the samples, measured by VSM in 5 T magnetic field, exceeded 0.6×103 A⋅cm−2 at 77 K and 4 T.  相似文献   

12.
This paper presents a very simple way to synthesis MgB2 thick films with high critical current density in a magnetic field by ex-situ annealing precursor B films in air with excessive Mg in a sealed quartz tube. The films show a significant improvement of critical current density in a magnetic field compared to the high purity films annealed in vacuum, while its zero-resistance transition temperature T c zero and normal state resistivity still maintain about 38 K and 17 μΩcm. The results demonstrate MgB2 thick films have great potential applications in superconducting coated conductors.   相似文献   

13.
Single domain GdBa2Cu7-δ (Gd123) bulk superconductors were fabricated in air by top-seeding melt-texture growth. Performance of the air-processed Gd123 was successfully enhanced by addition of both BaCO3 and BaCuO2−x , which suppress the formation of Gd1+x Ba2−x Cu3O7-δ solid solutions. The optimum doping amount ranges from 0.05 to 0.15, M BaCO3 and 0.05 to 0.1, M BaCuO2−x per molar Gd123. The distribution of the second phase particles was observed by scanning electron microscopy. A narrow band formed by Gd2BaCuO5 particle concentration appeared around the seeding zone in both ab plane and c-growth sector in Gd123 single grain. Trapped magnetic field density reached 0.67, T for sample with 24 mm in diameter and 8, mm in thickness and a high critical current density J c up to 91,200, A/cm2 was achieved at 77, K under self-field.  相似文献   

14.

In the present work, we have successfully synthesized pure tungsten oxide (WO3) and Sn (3 and 5 wt%)-doped WO3 nanoparticles using facile microwave irradiation method and studied about the electrochemical performances for supercapacitor electrode material. Structural and morphological studies of the prepared nanomaterials were investigated systematically. The powder XRD analysis reveals that pure WO3 and Sn-doped WO3 have monoclinic crystal structure and also crystallite size of the material decreases from 38 to 30 nm with increasing dopant concentration. Micro-Raman analysis confirms the formation of monoclinic phase with υ(O–W–O) stretching and δ(O–W–O) bending mode of vibration. SEM and micrographs show the elongation of the plate-like nanostructure of WO3 for the doping of Sn. High-resolution transmission electron microscope images depict the morphological change and increased porosity in doped samples. The supercapacitive performance and the electrochemical conductivity of the samples were analysed using cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy measurements. The results demonstrate that the 5 wt% Sn-doped WO3 electrode has the enhanced electrochemical performance in 1 M KOH with a maximum specific capacitance of 418 F g?1 at low current density of 1 A g?1. Also, it shows the increase in energy density from 4.88 to 11.77 Wh kg?1 with respect to the Sn concentration at the power density of 225 W kg?1.

  相似文献   

15.
Current–Voltage (IV) characteristics have been studied at various temperatures in vacuum evaporated thin films of a-Se85Te15−x Pb x (x = 0, 2, 4, 6) alloys. These characteristics show that, at low electric fields, an ohmic behaviour is observed. However, at high electric fields (E ∼ 104 V/cm), the current becomes superohmic. At high fields, in case of samples having 0 and 2 at% of Pb, the experimental data fits well with the theory of space charge limited conduction (SCLC) in case of uniform distribution of localized states in the mobility gap. Such type of behaviour is not observed at higher concentration of Pb in the present glassy system due to high conductivity. In these samples, joule heating due to large currents may prohibit the measurement of SCLC. Using the theory of SCLC for the uniform distribution of the traps, the density of localized defect states near Fermi level is calculated for these compositions. The results indicate that the density of defect states near Fermi level increases on addition of Pb to binary Se85Te15alloy. This is explained in terms of electronegativity of Pb as compared to host elements.  相似文献   

16.
The forsterite-melt partition coefficients K are determined experimentally for a large number of mono-, di-, tri-, and tetravalent impurities. The energies of native defects and impurities (E d) and the solution energies (E s) of impurities in forsterite are evaluated using computer simulation. The defect energy is shown to vary linearly with the difference in ionic radius between the host and substituent atoms (Δr) and with the impurity cation charge, while the partition coefficient and solution energy of impurities are quadratic functions of these parameters. The plots of lnK versus (Δr)2 and E s versus (Δr)2 for isovalent substitutions and Me Mg x and Me Si x ) pass close to the origin, in contrast to the plots for heterovalent substitutions (Me Mg and Me Si ). The significant y intercept of the latter plots is interpreted as evidence for the formation of extra defects maintaining electroneutrality. The y intercept of the plot of E s versus (Δr)2 is 2 eV, which is about half the formation energy of Frenkel defects in forsterite. The best fit equations representing the correlation between the partition coefficients and solution energies of impurities demonstrate that heterovalent substitutions increase the entropy contribution to the free energy of solution of impurities.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 720–732.Original Russian Text Copyright © 2005 by Dudnikova, Urusov, Zharikov.  相似文献   

17.
Bulk materials of MgB2 have been prepared with the stoichiometry of MgB2(Al2O3) x (x = 0, 2, 5, 10 and 20% nano-Al2O3 powders), by using solid-state reaction route. All samples were sintered at 750 °C for 30 min in a calorimeter to monitor the sintering reaction process. It is found that the onset temperatures of reaction between Mg and B powders increase significantly with increasing the amount of Al2O3. However, the reaction time is shortened for the nano-Al2O3 powders can effectively activate the reaction as a catalyst. The critical transition temperature decreases from 38.5 to 31.6 K, and the corresponding temperature window becomes narrow (less than 2.6 K). Furthermore, the amount of MgO impurity was found to increase with the increase of Al2O3, which probably indicates that partial Mg was replaced by Al.  相似文献   

18.
In this study we have investigated the influence of iron diffusion and diffusion-annealing time on the mechanical and the superconducting properties of bulk Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors by performing X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness, dc resistivity (ρ-T) and critical current density (Jc) measurements. The samples are prepared by the conventional solid-state reaction method. Doping of Bi-2223 was carried out by means of iron diffusion during sintering from an evaporated iron film on pellets. Then, the Fe layered superconducting samples were annealed at 830 °C for 10, 30 and 60 h. The mechanical properties of the compounds have been investigated by measuring the Vickers hardness (Hv). The mechanical properties of the samples were found to be load dependent. The load independent Vickers hardness (H0), Young’s modulus (E), yield strength (Y), and fracture toughness (KIC) values of the samples are calculated. These all measurements showed that the values of the Vickers hardness, critical current density, and critical transition temperature and lattice parameter c increased with increasing Fe doping and diffusion-annealing time.  相似文献   

19.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

20.
We have carried out magneto-resistance measurements of Sn-doped Cu0.5Tl0.5Ba2Ca2Cu3−y S y O10−δ (y = 0.5, 1.0, 1.5) superconductors and from there studied the effect of Sn doping on the thermally activated dissipation mechanism. A systematic decrease in T c(R = 0) and shift of T c (onset) towards lower temperature is typical feature of Sn-doped samples with the increased strength of external magnetic field. In these samples pronounced broadening of resistive transitions has been observed on the application of external magnetic field. The activation energy of carriers obtained from the Arrhenius plots of log (ρ) versus 1000/T have been found to decrease with the increase in the applied external field as well as increased Sn doping concentration. From log (ρ) versus U o/T plots we have found that for lower concentration of Sn the thermally activated dissipation can be explained in terms of flux creep. On the other hand for higher concentration of Sn, flux flow mechanism of energy dissipation seems to be dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号