首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents periodic preventive maintenance (PM) of a system with deteriorated components. Two activities, simple preventive maintenance and preventive replacement, are simultaneously considered to arrange the PM schedule of a system. A simple PM is to recover the degraded component to some level of the original condition according to an improvement factor which is determined by a quantitative assessment process. A preventive replacement is to restore the aged component by a new one. The degraded behavior of components is modeled by a dynamic reliability equation, and the effect of PM activities to reliability and failure rate of components is formulated based on age reduction model. While scheduling the PM policy, the PM components within a system are first identified. The maintenance cost and the extended life of the system under any activities-combination, which represents what kind of activities taken for these chosen components, are analyzed for evaluating the unit-cost life of the system. The optimal activities-combination at each PM stage is decided by using genetic algorithm in maximizing the system unit-cost life. Repeatedly, the PM scheduling is progressed to the next stage until the system's unit-cost life is less than its discarded life. Appropriately a mechatronic system is used as an example to demonstrate the proposed algorithm.  相似文献   

2.
General preventive maintenance model for input components of a system, which improves the reliability to ‘as good as new,’ was used to optimize the maintenance cost. The cost function of a maintenance policy was minimized under given availability constraint. An algorithm for first inspection vector of times was described and used on selected system example. A special ratio-criterion, based on the time dependent Birnbaum importance factor, was used to generate the ordered sequence of first inspection times. Basic system availability calculations of the paper were done by using simulation approach with parallel simulation algorithm for availability analysis. These calculations, based on direct Monte Carlo technique, were applied within the programming tool Matlab. A genetic algorithm optimization technique was used and briefly described to create the Matlab's algorithm to solve the problem of finding the best maintenance policy with a given restriction. Adjacent problem, which we called ‘reliability assurance,’ was also theoretically solved, concerning the increase of the cost when asymptotic availability value conforms to a given availability constraint.  相似文献   

3.
In this article, a new multi-objective optimization model is developed to determine the optimal preventive maintenance and replacement schedules in a repairable and maintainable multi-component system. In this model, the planning horizon is divided into discrete and equally-sized periods in which three possible actions must be planned for each component, namely maintenance, replacement, or do nothing. The objective is to determine a plan of actions for each component in the system while minimizing the total cost and maximizing overall system reliability simultaneously over the planning horizon. Because of the complexity, combinatorial and highly nonlinear structure of the mathematical model, two metaheuristic solution methods, generational genetic algorithm, and a simulated annealing are applied to tackle the problem. The Pareto optimal solutions that provide good tradeoffs between the total cost and the overall reliability of the system can be obtained by the solution approach. Such a modeling approach should be useful for maintenance planners and engineers tasked with the problem of developing recommended maintenance plans for complex systems of components.  相似文献   

4.
Reliability is a meaningful parameter in assessing the performance of systems such as chemical processing facilities, power plant, aircrafts, ships, etc. In the literature, reliability optimization is widely considered during the system design phase and it is carried out by an opportune selection of both system components and redundancy. On the other hand, the problem of maintaining a required level of reliability by an opportune maintenance policy has been poorly examined. The paper tackles this problem for a system whose major components can be maintained only during a planned system downtime. An exact algorithm is proposed in order to single out the set of components that must be maintained to guarantee a required reliability level up to the next planned stop with the minimum cost. In order to verify the algorithm effectiveness, it has been applied to a complex real case regarding ship maintenance.  相似文献   

5.
This paper develops two component-level control-limit preventive maintenance (PM) policies for systems subject to the joint effect of partial recovery PM acts (imperfect PM acts) and variable operational conditions, and investigates the properties of the proposed policies. The extended proportional hazards model (EPHM) is used to model the system failure likelihood influenced by both factors. Several numerical experiments are conducted for policy property analysis, using real lifetime and operational condition data and typical characterization of imperfect PM acts and maintenance durations. The experimental results demonstrate the necessity of considering both factors when they do exist, characterize the joint effect of the two factors on the performance of an optimized PM policy, and explore the influence of the loading sequence of time-varying operational conditions on the performance of an optimized PM policy. The proposed policies extend the applicability of PM optimization techniques.  相似文献   

6.
This article is based on a previous study made by Bris, Châtelet and Yalaoui [Bris R, Chatelet E, Yalaoui F. New method to minimise the preventive maintenance cost of series–parallel systems. Reliab Eng Syst Saf 2003;82:247–55]. They use genetic algorithm to minimize preventive maintenance cost problem for the series–parallel systems. We propose to improve their results developing a new method based on another technique, the Ant Colony Optimization (ACO). The resolution consists in determining the solution vector of system component inspection periods, TP. Those calculations were applied within the programming tool Matlab. Thus, highly interesting results and improvements of previous studies were obtained.  相似文献   

7.
In this study we propose an operating conditions-based preventive maintenance (PM) approach for computer numerical control (CNC) turning machines. A CNC machine wears according to how much it is used and the conditions under which it is used. Higher power or production rates result in more wear and higher failure rates. This relationship between the operating conditions and maintenance requirements is usually overlooked in the literature. On CNC turning machines we can control the machining conditions such as cutting speed and feed rate, which in turn affect the PM requirements of the CNC machine. We provide a new model to link the PM decisions to the machining conditions selection decisions, so that these two decision-making problems can be solved together by considering their impact on each other. We establish that our proposed geometric programming model captures the related cost terms along with the technological restrictions of CNC machines. The proposed preventive maintenance index function can be used to provide an intelligent CNC machine degradation assessment.  相似文献   

8.
A model is proposed to study the inspection and maintenance policy of systems whose failures can be detected only by periodic tests or inspections. Using predictive techniques, the time of the system failure can be predicted for some failure modes. If the system is found failed in an inspection, a corrective maintenance action is carried out. If the system is in a good condition but the predictive test diagnoses a failure in the period until the next inspection, then the system is replaced. The cost rate function is obtained for general distribution function of the signal time of a future failure and for one specific distribution function recently proposed. An algorithm is presented to find the optimal time between inspections and predictive tests and the optimal system replacement times for an age replacement policy. Numerical experiments illustrate the model.  相似文献   

9.
This paper deals with preventive maintenance optimization problem for multi-state systems (MSS). This problem was initially addressed and solved by Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. It consists on finding an optimal sequence of maintenance actions which minimizes maintenance cost while providing the desired system reliability level. This paper proposes an approach which improves the results obtained by genetic algorithm (GENITOR) in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203]. The considered MSS have a range of performance levels and their reliability is defined to be the ability to meet a given demand. This reliability is evaluated by using the universal generating function technique. An optimization method based on the extended great deluge algorithm is proposed. This method has the advantage over other methods to be simple and requires less effort for its implementation. The developed algorithm is compared to than in Levitin and Lisnianski [Optimization of imperfect preventive maintenance for multi-state systems. Reliab Eng Syst Saf 2000;67:193–203] by using a reference example and two newly generated examples. This comparison shows that the extended great deluge gives the best solutions (i.e. those with minimal costs) for 8 instances among 10.  相似文献   

10.
In some companies, corrective maintenance is conducted in-house but preventive maintenance might be outsourced. This raises a need to optimise some parameters such as the number of contracts from a perspective of the equipment owner. This paper considers a maintenance policy for such a situation, analyses the roles of the parameters in a PM model, proposes approaches to defining bonus functions, and finally discusses special cases of both the PM policy and the bonus function. Numerical examples are also given to explore the impact of parameters on the expected lifecycle cost rate.  相似文献   

11.
On a dynamic preventive maintenance policy for a system under inspection   总被引:2,自引:0,他引:2  
The purpose of this article is to propose both state and time-dependent preventive maintenance policy for a multi-state deteriorating system, which is equipped with inspection equipment(s) connected to a computer center. After the system being identified as state x at nd through computation by the computer center after inspection (or measurement) via equipment(s), one maintenance action with the minimum expected total cost since nd till Nd (where N=n+K for a fixed integer 0<K<∞) will be chosen from the set Ax of alternatives also with the help of the computer center. In real case, the expected total costs since nd till Nd will be time-dependent and so is the maintenance action chosen at nd. A numerical example is given to illustrate such a maintenance policy for a Markovian deteriorating system to describe its state dependent aspect only for simplicity reason. Due to the fact that both equipment measurement and computer computation take time, the preventive maintenance policy for a sufficiently small d may be used in fact as the one under continuous inspection.  相似文献   

12.
Preventive maintenance is applied to improve the device availability or decrease the repair costs when the device failures are in deterioration (or aging) phase. Preventive maintenance can be made more efficient by periodic monitoring wherein the state of deterioration can be assessed. This leads to the notion of condition-based maintenance. In this paper, we study the condition-based maintenance, and derive closed-form expressions of system availability when the device undergoes both deterioration as well as Poisson type failures. These closed-form solutions enable us to find faster algorithms to determine the optimal inspection policy.  相似文献   

13.
The semi-Markov decision model is a powerful tool in analyzing sequential decision processes with random decision epochs. In this paper, we have built the semi-Markov decision process (SMDP) for the maintenance policy optimization of condition-based preventive maintenance problems, and have presented the approach for joint optimization of inspection rate and maintenance policy. Through numerical examples, the improvement of this method is compared with the scheme, which optimizes only over the inspection rate. We also find that under a special case when the deterioration rate at each failure stage is the same, the optimal policy obtained by SMDP algorithm is a dynamic threshold-type scheme with threshold value depending on the inspection rate.  相似文献   

14.
The paper generalizes a preventive maintenance optimization problem to multi-state systems, which have a range of performance levels. Multi-state system reliability is defined as the ability to satisfy given demand. The reliability of system elements is characterized by their hazard functions. The possible preventive maintenance actions are characterized by their ability to affect the effective age of equipment. An algorithm is developed which obtains the sequence of maintenance actions providing system functioning with the desired level of reliability during its lifetime by minimum maintenance cost.To evaluate multi-state system reliability, a universal generating function technique is applied. A genetic algorithm (GA) is used as an optimization technique. Basic GA procedures adapted to the given problem are presented. Examples of the determination of optimal preventive maintenance plans are demonstrated.  相似文献   

15.
This article presents a multi-objective (maximization of availability and minimization of maintenance cost) preventive maintenance (PM) scheduling model for a continuous operating series system (COSS) which do not provide an off-working period for PM. The objective functions are optimized by using a Multi-Objective Genetic Algorithm (MOGA). The effectiveness of the model is demonstrated through a coal-fired boiler-tube. The case study shows that the model can improve the availability along with profound reduction of the maintenance cost, i.e., increases the profit of the plant.  相似文献   

16.
Traditionally, the optimal preventive maintenance interval for an unreliable production system has been determined by maximizing its limiting availability. Nowadays, it is widely recognized that this performance measure does not always provide relevant information for practical purposes. This is particularly true for order-driven manufacturing systems, in which due date performance has become a more important, and even a competitive factor. Under these circumstances, the so-called interval availability distribution is often seen as a more appropriate performance measure. Surprisingly enough, the relation between preventive maintenance and interval availability has received little attention in the existing literature. In this article, a series of mathematical models and optimization techniques is presented, with which the optimal preventive maintenance interval can be determined from an interval availability point of view, rather than from a limiting availability perspective. Computational results for a class of representative test problems indicate that significant improvements of up to 30% in the guaranteed interval availability can be obtained, by increasing preventive maintenance frequencies somewhere between 10 and 70%.  相似文献   

17.
The paper describes a new preventive maintenance approach for manufacturing systems under environment constraints. The manufacturing system under consideration consists of a machine M1 that produces a single product in a Just-in-Time context. To satisfy a constant demand d, the system called upon another machine M2 (the subcontractor), comprising the so-called environment, which produces at a certain rate the same type of product as M1. Both machines are subjected to random failures. Whereas machine M2 is uncontrollable from the maintenance point of view, an age-limit policy is used for preventive maintenance of machine M1. It is proved that the best age to perform preventive maintenance depends on the history of machine M1 and the state of M2. A numerical example is used to illustrate the proposed approach.  相似文献   

18.
In this study we attempt to deal with process planning, scheduling and preventive maintenance (PM) decisions, simultaneously. The objective is to minimize the total completion time of a set of jobs on a CNC machine. During the process planning, we decide on the processing times of the jobs which are controllable (i.e. they can be easily changed) on CNC machines. Using shorter processing times (higher production rates) would result in greater deterioration of the machine, and we would need to plan more frequent PM visits to the machine, during which it would not be available. Therefore, the selected processing times determine not only the completion times but also the PM visit times. We first provide optimality properties for the joint problem. We propose a new heuristic search algorithm to determine simultaneously the processing times of the jobs, their sequence and the PM schedule.  相似文献   

19.
This paper deals with a practical approach for the analysis and modelling of preventive maintenance (PM) data for repairable systems which have an increasing failure frequency and/or increasing severity. The concept and testing for the trend of severity of corrective work (CO) and PM are discussed. A framework for statistical analysis of interarrival times and downtimes due to CO/PM is proposed. A generalized non‐stationary model for scheduling PM to maximize availability is suggested. The effect of severity on scheduling PM activities is shown through sensitivity analysis. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The objective of condition based maintenance (CBM) is typically to determine an optimal maintenance policy to minimize the overall maintenance cost based on condition monitoring information. The existing work reported in the literature only focuses on determining the optimal CBM policy for a single unit. In this paper, we investigate CBM of multi-component systems, where economic dependency exists among different components subject to condition monitoring. The fixed preventive replacement cost, such as sending a maintenance team to the site, is incurred once a preventive replacement is performed on one component. As a result, it would be more economical to preventively replace multiple components at the same time. In this work, we propose a multi-component system CBM policy based on proportional hazards model (PHM). The cost evaluation of such a CBM policy becomes much more complex when we extend the PHM based CBM policy from a single unit to a multi-component system. A numerical algorithm is developed in this paper for the exact cost evaluation of the PHM based multi-component CBM policy. Examples using real-world condition monitoring data are provided to demonstrate the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号