首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
耐热和导电铜合金发展现状   总被引:5,自引:0,他引:5  
铜和铜合金具有优异的导电、导热及其它性能,是重要的工业材料之一。笔者就其发展现状和今后的开发与利用提出了看法。  相似文献   

2.
高强高导Cu-Ag合金的研究现状与展望   总被引:10,自引:3,他引:7  
张雷  颜芳  孟亮 《材料导报》2003,17(5):15-17,54
采用先进的冷变形加工结合中间热处理的方法,可使Cu—Ag系合金获得细密的双相纤维复合组织,以达到使合金同时具有高强度和高导电性的双重目的。综述了这种新型合金的研究现状,展望了其进一步发展前景。  相似文献   

3.
高强高导电铜合金是一类具有优良综合性能的功能材料和结构材料,被广泛应用于电子、机械等领域,本文阐述了高强高导铜合金的研究现状,系统介绍了此类合金的强化机理、制备方法及组织和性能特点,并且分析了稀土的作用机制及对该类铜合金性能的影响,最后展望了该类合金的发展前景。  相似文献   

4.
光热偏转薄膜热导测试系统及其应用   总被引:2,自引:0,他引:2  
根据光热偏转光谱(PTDS)原理,研制成功光热偏转法薄膜热导测试系统,对大量试样进行了测量,结果同文献参考值符合较好,测量重复精度优于50%,为材料科学有关热性质的研究,特别是有关光热偏转薄膜热导率的研究提供了有力的检测手段,为研制高质量金刚石薄膜提供了依据。  相似文献   

5.
6.
Titanium and its alloys are currently considered as one of the most important metallic materials used in the biomedical applications, due to their excellent mechanical properties and superior biocompatibility. In the present study, a new effective method for fabricating high porosity titanium alloy scaffolds was developed. Porous Ti-6Al-4V scaffolds are successfully fabricated with porosities ranging from 30% to 70% using spaceholder and powder sintering technique. Based on its acceptable properties, spherical carbamide particles with different diameters (0.56, 0.8, and 1mm) were used as the space-holder material in the present investigation. The Ti-6Al-4V scaffolds porosity is characterized by using scanning electron microscopy. The results show that the scaffolds spherical-shaped pores are depending on the shape, size and distribution of the space-holder particles. This investigation shows that the present new manufacturing technique is promising to fabricate a controlled high porosity and high purity Ti-6Al-4V scaffolds for hard tissue replacement.  相似文献   

7.
Copper (Cu) gained its importance in several applications due to its attractive thermal characteristics. However, its applications are limited, wherever high strength and high thermal conductivity are desirable. Thus, an attempt was made to develop Cu/CNT composites having the improved mechanical and thermal properties. Initially, Cu/CNT composite powder was synthesized through molecular level mixing technique, where the functionalized 20–40?nm and 40–60?nm diameter CNT with varying concentrations from 0.25 to 1.0?wt.% with an increment of 0.25?wt.% were used. The powder was uniaxially compacted at 800?MPa and sintered in the range of 2–8?hr at 900?°C. The best characteristics of Cu/CNT composites obtained from the present study are as follows: Relative density (RD) – 89.1%, Hardness – 61.2?±?0.58 VHN, Thermal conductivity – 343?W/mK and these characteristics obtained their maximum value at 0.25?wt.% CNT concentration and started to decrease irrespective of CNT diameter.  相似文献   

8.
Reversible solid oxide cells based on proton conductors (P-ReSOCs) have potential to be the most efficient and low-cost option for large-scale energy storage and power generation, holding promise as an enabler for the implementation of intermittent renewable energy technologies and the widespread utilization of hydrogen. Here, the rational design of a new class of hexavalent Mo/W-doped proton-conducting electrolytes with excellent durability while maintaining high conductivity is reported. Specifically, BaMo(W)0.03Ce0.71Yb0.26O3-δ exhibits dramatically enhanced chemical stability against high concentrations of steam and carbon dioxide than the state-of-the-art electrolyte materials while retaining similar ionic conductivity. In addition, P-ReSOCs based on BaW0.03Ce0.71Yb0.26O3-δ demonstrate high peak power densities of 1.54, 1.03, 0.72, and 0.48 W cm−2 at 650, 600, 550, and 500 °C, respectively, in the fuel cell mode. During steam electrolysis, a high current density of 2.28 A cm−2 is achieved at a cell voltage of 1.3 V at 600 °C, and the electrolysis cell can operate stably with no noticeable degradation when exposed to high humidity of 30% H2O at −0.5 A cm−2 and 600 °C for over 300 h. Overall, this work demonstrates the promise of donor doping for obtaining proton conductors with both high conductivity and chemical stability for P-ReSOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号