首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Background and Aims: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. Results: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. Methods: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. Conclusion: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.  相似文献   

3.
For patients exhibiting non-small-cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are a first-line treatment. However, most patients who initially responded to EGFR-TKIs eventually developed acquired resistance, limiting the effectiveness of therapy. It has long been known that epithelial–mesenchymal transition (EMT) leads to acquired resistance to EGFR-TKIs in NSCLC. However, the mechanisms underlying the resistance dependent on EMT are unknown. This research aimed to reveal the effects of LMNA in the regulation of acquired resistance to erlotinib by EMT in NSCLC. The acquired erlotinib-resistant cells (HCC827/ER) were induced by gradual increase of concentrations of erlotinib in erlotinib-sensitive HCC827 cells. RNA sequencing and bioinformatics analysis were performed to uncover the involvement of LMNA in the EMT process that induced acquired resistance to erlotinib. The effect of LMNA on cell proliferation and migration was measured by clone-formation, wound-healing, and transwell assays, respectively. The EMT-related protein, nuclear shape and volume, and cytoskeleton changes were examined by immunofluorescence. Western blot was used to identify the underlying molecular mechanism of LMNA regulation of EMT. HCC827/ER cells with acquired resistance to erlotinib underwent EMT and exhibited lower LMNA expression compared to parental sensitive cells. LMNA negatively regulated the expression of EMT markers; HCC827/ER cells showed a significant up-regulation of mesenchymal markers, such as CDH2, SNAI2, VIM, ZEB1, and TWIST1. The overexpression of LMNA in HCC827/ER cells significantly inhibited EMT and cell proliferation, and this inhibitory effect of LMNA was enhanced in the presence of 2.5 μM erlotinib. Furthermore, a decrease in LMNA expression resulted in a higher nuclear deformability and cytoskeletal changes. In HCC827/ER cells, AKT, FGFR, ERK1/2, and c-fos phosphorylation levels were higher than those in HCC827 cells; Furthermore, overexpression of LMNA in HCC827/ER cells reduced the phosphorylation of AKT, ERK1/2, c-fos, and FGFR. In conclusion, our findings first demonstrated that downregulation of LMNA promotes acquired EGFR-TKI resistance in NSCLC with EGFR mutations by EMT. LMNA inhibits cell proliferation and migration of erlotinib-resistant cells via inhibition of the FGFR/MAPK/c-fos signaling pathway. These findings indicated LMNA as a driver of acquired resistance to erlotinib and provided important information about the development of resistance to erlotinib treatment in NSCLC patients with EGFR mutations.  相似文献   

4.
Glycine N-methyltransferase (GNMT) expression is vastly downregulated in hepatocellular carcinomas (HCC). High rates of GNMT knockout mice developed HCC, while overexpression of GNMT prevented aflatoxin-induced carcinogenicity and inhibited liver cancer cell proliferation. Therefore, in this study, we aimed for the identification of a GNMT inducer for HCC therapy. We established a GNMT promoter-driven luciferase reporter assay as a drug screening platform. Screening of 324 pure compounds and 480 crude extracts from Chinese medicinal herbs resulted in the identification of Paeonia lactiflora Pall (PL) extract and the active component 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (PGG) as a GNMT inducer. Purified PL extract and PGG induced GNMT mRNA and protein expression in Huh7 human hepatoma cells and in xenograft tumors. PGG and PL extract had potent anti-HCC effects both in vitro and in vivo. Furthermore, PGG treatment induced apoptosis in Huh7 cells. Moreover, PGG treatment sensitized Huh7 cells to sorafenib treatment. Therefore, these results indicated that identifying a GNMT enhancer using the GNMT promoter-based assay might be a useful approach to find drugs for HCC. These data also suggested that PGG has therapeutic potential for the treatment of HCC.  相似文献   

5.
NYGGF4, an obesity-related gene, is proposed to be involved in the development of insulin resistance; however, the underlying molecular mechanisms remain unclear. In the present analysis, NimbleGen tiling arrays were used to determine the patterns of genomic DNA methylation at CpG islands and promoters in NYGGF4-overexpression adipocytes. A total of 2352 CpG dinucleotides in 2018 genes and 3490 CpG dinucleotides in 3064 genes were found to be hypermethylated or hypomethylated, respectively, in NYGGF4-overexpression adipocytes. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis revealed enrichment of biological processes associated with energy metabolism and signal transduction events, including the peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway, and mitogen-activated protein kinases(MAPK) and Ras homolog gene family, member A (RhoA) signaling. These data demonstrate that differentially methylated genes are significantly overrepresented in NYGGF4-overexpression adipocytes, providing valuable clues for further exploration of the role of NYGGF4 in insulin sensitivity regulation.  相似文献   

6.
7.
The story of high mobility group protein B1 (HMGB1) in cancer is complicated and the function of HMGB1 in different cancers is uncertain. This review aims to retrieve literature regarding HMGB1 from English electronic resources, analyze and summarize the role of the HMGB1 signaling pathway in hepatocellular carcinoma (HCC), and provide useful information for carcinogenesis and progression of HCC. Results showed that HMGB1 could induce cell proliferation, differentiation, cell death, angiogenesis, metastasis, inflammation, and enhance immunofunction in in vitro and in vivo HCC models. HMGB1 and its downstream receptors RAGE, TLRs and TREM-1 may be potential anticancer targets. In conclusion, HMGB1 plays an important role in oncogenesis and represents a novel therapeutic target, which deserves further study.  相似文献   

8.
Stroke is one of the most common causes of death, only second to heart disease. Molecular investigations about stroke are in acute shortage nowadays. This study is intended to explore a gene expression profile after brain ischemia reperfusion. Meta-analysis, differential expression analysis, and integrated analysis were employed on an eight microarray series. We explored the functions and pathways of target genes in gene ontology (GO) enrichment analysis and constructed a protein-protein interaction network. Meta-analysis identified 360 differentially expressed genes (DEGs) for Mus musculus and 255 for Rattus norvegicus. Differential expression analysis identified 44 DEGs for Mus musculus and 21 for Rattus norvegicus. Timp1 and Lcn2 were overexpressed in both species. The cytokine-cytokine receptor interaction and chemokine signaling pathway were highly enriched for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. We have exhibited a global view of the potential molecular differences between middle cerebral artery occlusion (MCAO) animal model and sham for Mus musculus or Rattus norvegicus, including the biological process and enriched pathways in DEGs. This research helps contribute to a clearer understanding of the inflammation process and accurate identification of ischemic infarction stages, which might be transformed into a therapeutic approach.  相似文献   

9.
10.
Food-derived tripeptides can relieve colitis symptoms; however, their alleviation mode has not been systematically evaluated as an alternative nutritional compound. This study aimed to reveal the potential mechanism of 8000 food-derived tripeptides against acute colitis using a computer-aided screening strategy. Forty-one potential hub targets related to colitis with a Fit score > 4.0 were screened to construct the protein-protein and protein-tripeptide network based on the PharmMapper database and STRING software (Ver. 11.5). In addition, 30 significant KEGG signaling pathways with p-values < 0.001 that the 41 hub targets mainly participated in were identified using DAVID software (Ver. 6.8), including inflammatory, immunomodulatory, and cell proliferation and differentiation-related signaling pathways, particularly in the Ras- and PI3K-Akt signaling pathways. Furthermore, molecular docking was performed using the Autodock against majorly targeted proteins (AKT1, EGFR, and MMP9) with the selected 52 tripeptides. The interaction model between tripeptides and targets was mainly hydrogen-bonding and hydrophobic interactions, and most of the binding energy of the tripeptide target was less than −7.13 kcal/mol. This work can provide valuable insight for exploring food-derived tripeptide mechanisms and therapeutic indications.  相似文献   

11.
The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.  相似文献   

12.
13.
Suppressor of cytokine signaling 3 (SOCS3) plays crucial roles in JAK/STAT signaling pathway inhibition in hepatocellular carcinoma (HCC). However, the methylation status of SOCS3 in HBV infection-related HCC and the relationship between SOCS3 methylation and the clinical outcome remain unknown. Here, we reported that in HCC tumor tissues, two regions of the CpG island (CGI) in the SOCS3 promoter were subjected to methylation analysis and only the region close to the translational start site of SOCS3 was hypermethylated. In HCC tumor tissues, SOCS3 showed an increased methylation frequency and intensity compared with that in the adjacent non-tumor tissues. Moreover, SOCS3 expression was significantly down-regulated in HCC cell lines and tumor tissues, and this was inversely correlated with methylation. Kaplan–Meier curve analysis revealed that in patients with an hepatitis B virus (HBV) infection background, SOCS3 hypermethylation was significantly correlated with a poor clinical outcome of HCC patients. Our findings indicated that SOCS3 hypermethylation has already happened in non-tumor tissues and increased in both frequency and intensity in tumor tissues. This suggests that the methylation of SOCS3 could predict a poor prognosis in HBV infection-related HCC patients.  相似文献   

14.
15.
16.
The fruit of Cnidium monnieri is commercially used as healthcare products for the improvement of impotence and skin diseases. Three new coumarins, 3''-O-methylmurraol (1), rel-(1''S,2''S)-1''-O-methylphlojodicarpin (2), and (1''S,2''S)-1''-O-methylvaginol (3), have been isolated from the fruits of C. monnieri, together with 14 known compounds (4–17). The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 1, 4–12, and 14–17 exhibited inhibition (IC50 ≤ 7.31 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 7, 9–11, 15, and 17 inhibited fMLP/CB-induced elastase release with IC50 values ≤7.83 µg/mL. This investigation reveals that bioactive isolates (especially 6, 7, 14, and 17) could be further developed as potential candidates for the treatment or prevention of various inflammatory diseases.  相似文献   

17.
18.
Various enzymes in the one-carbon metabolic pathway are closely related to the development of tumors, and they can all be potential targets for cancer therapy. Serine hydroxymethyltransferase2 (SHMT2), a key metabolic enzyme, is very important for the proliferation and growth of cancer cells. However, the function and mechanism of SHMT2 in head and neck cancer (HNC) are not clear. An analysis of The Cancer Genome Atlas (TCGA) data showed that the expression of SHMT2 was higher in tumor tissue than in normal tissue, and its expression was significantly associated with male sex, aggressive histological grade, lymph node metastasis, distant metastasis, advanced TNM stage, and lymphovascular invasion in HNC. SHMT2 knockdown in FADU and SNU1041 cell lines significantly inhibited cell proliferation, colony formation, migration, and invasion. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using TCGA data revealed that SHMT2 was closely related to cancer stem cell regulation and maintenance. Furthermore, we found that silencing SHMT2 inhibited the expression of stemness markers and tumor spheroid formation compared with a control group. On the contrary, stemness markers were significantly increased after SHMT2 overexpression in HEP-2 cells. Interestingly, we found that knocking down SHMT2 reduced the expression of genes related to the Notch and Wnt pathways. Finally, silencing SHMT2 significantly reduced tumor growth and decreased stemness markers in a xenograft model. Taken together, our study suggests that targeting SHMT2 may play an important role in inhibiting HNC progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号