首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of hydroxypropylation (molar substitution, MS 0.05, 0.12, and 0.18) and cross‐linking (0.03%, 0.1%, and 0.2%) on swelling properties of wheat starch granules at several temperatures and heating times were investigated by laser diffraction particle size analysis. Starch samples were dispersed in water at temperatures ranging from 30 to 90°C, for 1 to 360 min. All starch granules exhibited distinct bimodal size distributions: small B‐granules with mean diameter of 2.3 μm and large A‐granules with mean diameter of 20.4 μm. As temperature increased, the B‐granules swelled more than A‐granules. Swelling of A‐granules sharply increased at 60°C. Swelling was more pronounced with increasing molar substitution of hydroxypropyl groups, while increased swelling was not observed in cross‐linked starches. The dependence of swelling capacity on heating time was different at 60 and 80°C as well as amongst modified starches. As heating time was prolonged, mean granule sizes for native, control, and hydroxypropylated starches at 80°C decreased after reaching maximum size due to loss of granule integrity, while those at 60°C showed no significant change.  相似文献   

2.
The effect of white sauce ingredients and increased cooking time at 90 °C on the degree of gelatinization of corn, waxy corn, rice, potato and modified waxy corn starches was studied. The changes in pasting properties, linear viscoelastic properties, and microstructure were determined. In all the native starches in water, a longer cooking time at 90 °C caused greater starch granule swelling and more leaching of solubilized starch polymers into the intergranular space. These effects were more noticeable in the waxy corn and potato starches. The potato starch was the most affected, with complete disruption of the starch granules after 300 s at 90 °C. The microstructural changes which transformed a system characterized by starch granules dispersed in a continuous phase (amylose/amylopectin matrix) into a system with an increase in the continuous phase and a decrease in starch granules were associated with a decrease in system viscoelasticity. The elastic moduli were higher in the sauce than in the starch in water system. However, with the exception of potato starch, the white sauce showed lower viscoelasticity than the starch in water system. The white sauce ingredients decreased the effect of cooking time on the starch gelatinization process, particularly in potato starch.  相似文献   

3.
Rice starch–water suspension (20%) were subjected to high hydrostatic pressure (HHP) treatment at 120, 240, 360, 480, and 600 MPa for 30 min. Polarizing light microscope, scanning electron microscopy (SEM), rapid visco analyzer (RVA), differential scanning calorimeter (DSC), and X-ray diffraction were used to investigate the physicochemical and structural changes of starch. Microscopy studies showed that the treatment of starch with HHP under 600 MPa for 30 min resulted in a complete loss of birefringence and a gel-like appearance. The treatment of starch suspension with HHP at 600 MPa resulted in a significant increase in swelling power and solubility at low temperature (50–60 °C), but opposite trends were found at high temperature (70–90 °C). The DSC analysis showed a decrease in gelatinization temperatures and gelatinization enthalpy with increase of pressure levels. RVA viscograms of starches exhibited an increase in peak, trough, and final viscosities, peak time, and pasting temperature but decrease of breakdown, setback viscosities, and pasting temperature when pressure was increased. X-ray diffraction studies showed that the HHP treatment converted rice starch that displayed the A-type X-ray patterns to the B-type-like pattern. These results showed that the treatment of rice starch in 20% starch/water suspension at a pressure of 600 MPa for 30 min led to a complete gelatinization of starch granules.  相似文献   

4.
Rye starch shows the typical inhibited swelling behaviour of triticeae starches with an onset of swelling at rather low temperature (50–55°C). Swollen rye starch granules exist as individuals even after swelling at 100°C. The total dispersion of rye starch needs temperatures above 120°C with pressure cooking. On heating of the rye starch suspension preferentially amylose is leached. Defatting of rye starch exhibits no influence on swelling power but results in higher solubility and in increased amylose leaching. The drying procedures applied here resulted in stronger assoziation of the polymer molecules in the starch granule leading to higher swelling temperatures and a reduced solubility. Shiftings of the crystalline/ amorphous-ratio of the starch granules as caused by different drying procedures, had no influence on the results of swelling power investigation but the highest swelling enthalpy as well as Brabender viscosity were exhibited by a sample dried at room temperature. It is proved to be possible to change the swelling behaviour of rye starch to “potato starch type” by slight chemical modification like succination.  相似文献   

5.
Structural and physicochemical characteristics of cassava starch treated with 0.36% HCl in anhydrous ethanol during 1 and 12 h at 30, 40, and 50°C followed by ball milling for 1 h were analyzed. Average yield of acid‐ethanol starches reached 98% independent of the treatment conditions. Solubility of acid‐ethanol starches increased with reaction temperature and time, but it did not change after ball milling. Granule average size reduced with chemical treatment from 25.2 to 20.0 µm after 12 h at 50°C. Ball milling decreased the granule average diameter of the native starch and those chemically treated at 30°C/1 h or 40°C/1 h, but it did not alter the starches treated for 12 h, independent of temperature. From scanning electron microscopy (SEM), starch granules presented round shape and after modification at 50°C/12 h, before and after ball milling, showed a rough and exfoliated surface. Some granules were deformed, suggesting partial gelatinization that was more intense after milling. Starch crystallinity increased as temperature and time of chemical treatment were increased, while amylose content, intrinsic, and pasting viscosities decreased. Gelatinization temperatures increased for all chemical starches. The findings can be related to the preferential destruction of amorphous areas in the granules, which are composed of amylose and amylopectin. After ball milling, the starch crystallinity decreased, amylose content, intrinsic, and pasting viscosities kept unchanged and gelatinization temperatures and enthalpy reduced. Ball milling on native and chemical starches caused the increase of amorphous areas with consequent weakening and decreasing of crystalline areas by breaking of hydrogen bonds within the granules.  相似文献   

6.
以燕山板栗淀粉为材料,在30、40和50℃分别进行韧化处理。采用扫描电子显微镜(SEM)、X-射线衍射分析(XRD)、差示扫描量热分析(DSC)及体外消化法等方法,研究了韧化处理对板栗淀粉颗粒结构、理化特性和体外消化性的影响。研究表明:与原淀粉相比,韧化处理后2种板栗淀粉的直链淀粉含量降低,淀粉颗粒破损率增大,但淀粉仍为C型晶体。随着韧化温度的升高,淀粉颗粒表面出现凹坑和损伤越显著,膨胀度随着处理温度的升高而降低。DSC分析表明,韧化处理使淀粉的糊化温度升高,热焓变化不大。不同的韧化处理温度对板栗淀粉体外消化性有不同的影响,韧化处理使淀粉的快消化淀粉(RDS)含量减少,慢消化淀粉(SDS)含量增大。  相似文献   

7.
Characteristics of waxy type starches isolated from amaranth, waxy millet and waxy sorghum harvested in Korea were evaluated. Shapes of all starch granules were polygonal or slightly round and the surfaces of waxy millet and waxy sorghum starch granules showed visible pores. Amylose contents of the three starches were between 3.2–6.0% and amaranth starch showed the highest water binding capacity (WBC) (130.7%). The swelling power and solubility of amaranth starch studied at 65.0–95.0°C increased about 13.7‐ and 14.0‐fold, respectively, with increase in temperature. Swelling power of waxy sorghum starch was the highest (72.6 at 95°C) among the starches studied, while amaranth starch had a constant swelling power and its rate of solubility increasely only slowly at temperatures higher than 75°C. From RVA data, initial pasting temperatures of amaranth, waxy sorghum and waxy millet starches were 75.7, 73.3 and 75.2°C, respectively. Peak viscosity, breakdown, and setback from trough of amaranth starch were 68.3, 16.7 and 7.5 RVU, respectively, which were the lowest values among the starches investigated. Using DSC, onset temperature of gelatinization of amaranth starch was 1.5–4.0°C higher than those of waxy sorghum and millet starches, corresponding to the RVA result. The enthalpies of gelatinization of the starches studied in our laboratory were in the range of 8.5–12.7 J/g with decreasing order of waxy sorghum > amaranth > waxy millet starch.  相似文献   

8.
When potato starch was hydrolyzed to form Nägeli amylodextrin by 16% sulfuric acid at 30°C, only the amorphous portion of the starch granules was deteriorated. The crystallinity of Nägeli amylodextrin showing the hydrolysis ratio of 0.22 was 1.28 times as large as that of original starch. The hydrolysis process at above 45°C was given by two exponential equations. The value of acid resistance portion (Co) at 30 and 38°C was 100%, while the values at 45, 50 and 55°C were 67, 38 and 18%, respectively. The high value of Co generally showed the high acid resistance in the various starches. Sweet potato and waxy rice starches were more easily hydrolyzed than other starches, although they gave the relatively high value of Co. Thus, it was slightly more difficult for low acid resistance portion of potato starch to be hydrolyzed than for that of other starches. Moreover, that of waxy rice was easily hydrolyzed.  相似文献   

9.
The physicochemical and pasting properties of high amylose rice starches isolated using alkaline steeping method from different Korean rice cultivars, Goamy2 and Goamy, and from imported Thai rice were examined. The protein and lipid contents of the Goamy2 starch were higher than those of the other two starches. The amylose and total dietary fiber contents were ranged from 31.4 to 36.8% and from 6.3 to 8.6%, respectively. Total dietary fiber was positively correlated to amylose content. Water binding capacity was higher in the Goamy2 starch (172.2%) than in the Goamy and Thai rice starches (112.7–115.6%). The swelling power of the Goamy2 starch showed lower values, but its value at 95°C was similar to others because of its rapid increment at 85°C. The granular size of Goamy2 starch was widely distributed compared to those of others. The Goamy2 starch showed a high initial pasting temperature (92.0°C) and low breakdown and setback viscosities. The Goamy and Thai rice starch granules were polygonal‐shaped with A‐type crystals, whereas the Goamy2 starch granules were round‐shaped with B‐type crystals. Goamy and Goamy2 starches showed a single endotherm at 60.8 and 76.0°C for peak temperature and 10.0 and 11.5 J/g for gelatinization enthalpies, respectively. The Thai rice starch presented an endotherm with a shoulder peak at 68.3°C (75.3°C for the main peak) and a gelatinization enthalpy of 12.4 J/g.  相似文献   

10.
This study compared the properties of pigeonpea and mung bean starches and noodles made from each. No large differences in size and shape of respective starch granules were observed. The degree of syneresis of pigeonpea starch was nearly three times that of mung bean starch. Swelling power of pigeonpea starch was considerably lower at 60°C and 70°C but it did not differ markedly at 80° and 90°C. The Brabender . viscosity patterns of 6% starch pastes of pigeonpea and mung bean indicated no pasting peak during heating to 95°C; neither showed breakdown of the hot paste. Sensory tests indicated that pigeonpea starch of dhal (decorticated dry split cotyledons) was as good for noodle preparation as mung bean dhal starch.  相似文献   

11.
Mixed starches with an amylose content of 5, 10, 18, 20, 23, and 25% were prepared by blending starches isolated from waxy and non‐waxy wheat at different ratios. The dynamic viscoelasticity of mixed 30% and 40% starch gels was measured using a rheometer with parallel plate geometry. The change in storage shear modulus (G′) over time at 5 °C was measured, and the rate constant of G′ development was estimated. As the proportion of waxy starch in the mixture increased, starch gels showed lower G′ and higher frequency dependence during 48 h storage at 5 °C. Since the amylopectin of waxy starch granules was solubilized more easily in hot water than that of non‐waxy starch granules, mixed starch containing more waxy starch was more highly solubilized and formed weaker gels. G′ of 30% and 40% starch gels increased steadily during 48 h. 30% starch gel of waxy, non‐waxy and mixed starches showed a slow increase in G′. For 40% starch gels, mixed starch containing more waxy starch showed rapidly developed G′ and had a higher rate constant of starch retrogradation. Waxy starch greatly influenced the rheological properties of mixed starch gels and its proportion in the mixture played a major role in starch gel properties.  相似文献   

12.
A new method of physical modification of starch in the presence of high concentrated salt solution is presented, called “Osmotic Pressure Treatment” (OPT). OPT was introduced in order to produce the same physically modified products as obtained by conventional heat‐moisture treatment (HMT) of starch. Potato starch was selected for the comparative study of the two methods. For the OPT method, potato starch was suspended in a saturated solution of sodium sulfate and heated in an autoclave at 105°C and 120°C ,which corresponded to the calculated osmotic pressures of 328 and 341 atm (332 and 345 bar, respectively) (assuming sodium sulfate dissociates completely) for 15, 30 and 60 min, respectively. For the HMT method, starch with 20% moisture content was placed in a Duran bottle, then the same heat treatment method in the autoclave was applied. Light and scanning electron microscopy (SEM) showed that OPT of starch changed the shape of the starch granules to a folded structure, while the starches remained unchanged after HMT. The RVA viscogram for the OPT starch exhibited a decrease in the peak viscosity without a breakdown and an increase of the pasting temperature when increasing the temperature and time, which was in an agreement with the viscosity patterns for the HMT starches. X‐ray diffraction patterns were altered from B to A+B for the HMT and from B to A type for the OPT starch when treated at 120°C. After OPT, the gelatinization temperatures (To, Tp, and Tc) of the starch increased significantly with increasing temperature and time, whereas only the Tc of starch increases after HMT. The biphasic broadening of the peaks (high TcTo) can be explained by an inhomogeneous heat transfer during HMT. Narrow peaks in the DSC curve can be an indication for a better homogeneity of the OPT samples. However, both methods provide a similar decrease in the gelatinization enthalpy (ΔH). The amylose‐amylopectin ratio calculated from the HPSEC patterns was strongly increased for HMT starches at 105°C for 60 min and 120°C for 30 min and decreased after treatment at 120°C for 60 min. For OPT starches the ratio was strongly increased at 120°C for 15 min and decreased after prolong heating. The OPT provides a uniform heat distribution in the starch suspension. This allows the modified starch to be produced on a larger scale.  相似文献   

13.
Starch was isolated from green Cavendish bananas after sodium hydroxide treatment, and its physical properties as they affected its potential acceptance as a food ingredient were measured and compared with those of corn, waxy corn, waxy corn diphosphate, acetylated waxy corn diphosphate, potato, and tapioca starches. Banana starch granules had a moisture content of 15.5%, an amylose content of 19.5% on a dry weight basis, and were highly irregular in shape and size, with the mode of characteristic length falling at 15 μm. The gelatinization range was 70.1 °C to 74.6 °C. Scanning electron micrography showed that in water the granules underwent surface cracking at 65 °C and progressively greater swelling, deformation, and erosion between 70 °C and 90 °C. At 95 °C, 6% banana starch paste in a Brabender Amylograph had a viscosity four times that of corn starch paste of the same concentration, and viscosity decreased rather slowly with stirring. The paste was somewhat longer than that of corn starch, but appreciably shorter than tapioca starch paste. Gelled banana starch was nearly as strong as corn starch, and also was nearly as opaque and reflective.  相似文献   

14.
The velvet bean (Mucuna pruriens) is an excellent potential starch source as it contains approximately 52 % of this carbohydrate. The physicochemical and functional properties of velvet bean starch were evaluated and compared to those of other starches. The chemical composition was: moisture 10.78 %; solid matter: protein 0.71 %; fiber 0.54 %; ash 0.28 %; fat 0.40 %; starch 98.1 %; and phosphorus 0.015 %. Amylose content was higher (39.21 %) than in tuber and cereal starches but similar to other legume starches. Average granule size was 23.6 μm, granules having an oval shape. Paste properties were: gelatinization temperature, 74.82 °C; gelatinization temperature range, 70—80 °C; and alkali number, 3.22. Gels produced with velvet bean starch were firmer than those produced with corn starch, and had a higher degree of retrogradation, even at high concentrations. At 90 °C, solubility was 16.2 % and swelling power was 16.17 g of water/g of starch. Given these properties, velvet bean starch has potential applications in food products requiring high temperature processing, such as jams, jellies and canned products.  相似文献   

15.
Moisture Sorption Characteristics of Kudzu Starch and Sweet Potato Starch   总被引:1,自引:0,他引:1  
Moisture sorption characteristics of kudzu starch and sweet potato starch were investigated based on the results of moisture sorption isotherms at 11°C, 20°C and 30°C, thermal analysis, isosteric heat of sorption and entropy of sorption. The water of crystallization in sweet potato starch was strongly retained compared with that in kudzu starch. Differences in amount of moisture sorbed between kudzu starch and sweet potato starch seemed to be attributable to the stability of the microscopic structure. The interaction of moisture-sweet potato starch was stronger than that of moisture-kudzu starch. Amount of moisture sorbed and strength of moisture-starch binding of the starches, preheated to 110°C, decreased compared with those of the starches vacuum-dried at 20°C because of release of water from the amorphous part of the starch granule.  相似文献   

16.
K. Lorenz 《Starch - St?rke》1979,31(6):181-184
Fababean starch (Vicia faba) was prepared by air-classifying a fababean flour, but then required repeated water extractions to reduce the protein content to a level comparable to that found in laboratory-prepared corn- and wheat starches. Scanning electron microscopy of the fababean starch showed oval or irregularly shaped granules which were larger in average particle size than those of corn starch. Fababean starch had a higher amylose content, gelatinization temperature range and water-binding capacity, but a lower swelling power and solubility at 90 °C compared to wheat- and corn starch. Amylograph viscosities were in-between values recorded for the other 2 starches at each reference point. The observed differences in physico-chemical characteristics between the cereal starches and the legume starch were not large.  相似文献   

17.
The gelatinization of a commercial wheat and potato starch and two types of corn starch (Amaizo Amylomaize VII and Amaizo Amioca Pearl starch) was examined by the scanning electron microscope. Concomitantly, the loss of birefringence in the wheat, potato and corn starch was followed with the light microscope. Swelling and deformation of the starch granules observed in the scanning electron microscope correlated with the loss of birefringence in the light microscope. The gelatinization range of the starches was detected with the scanning scope. Swelling of the wheat starch granules was first observed in the larger A-type granules. Amylomaize VII retained granular structure until approximately 95 °C even though birefringence changes were observed as low as 69°C. Some evidence of structural changes were evident at 83°C. Amioca Pearl underwent structural changes at approximately 68°C and abruptly lost granular structure at approximately 71 °C.  相似文献   

18.
The formation of amylose‐lipid complexes of form I (amorphous structure) and form II (crystalline structure) during heating was studied by differential scanning calorimetry (DSC) for a range of monoglycerides and for monoglyceride mixtures. The temperature treatment applied to amylose‐monoglyceride‐mixtures were either the first scan in DSC (10 °C/min, 15‐144 °C) or a prolonged heat treatment where the samples were kept at 100 °C for 24 h before being analysed in DSC. The temperature treatment influenced which type of complex was formed, and how much, whereas the thermal stability (as judged from the transition peak temperature) was only marginally influenced. It is shown in this study that all the investigated monoglycerides were able to give complex form I as well as complex form II, although the conditions for the formation differed between the monoglycerides. It was found that a simple DSC‐scan was enough for formation of complex form II for the shortest monoglycerides (glycerol monocaprin, glycerol monolaurin and glycerol monomyristin), whereas in case of the longer monoglycerides and monoglyceride mixtures the prolonged heat treatment was required for formation of complex form II. Moreover, the monoglyceride mixtures gave only form II at conditions where the individual components in the mixtures gave both form I and form II.  相似文献   

19.
In this work the contribution of molecular structures to the swelling behavior of rice starches was investigated. Rice starches with different amylose contents (0 ‐ 23.4 %) were gelatinized to various degrees (approximately 10, 20, and 50 %) with 13 M aqueous LiCl, and the surface‐gelatinized starch and ungelatinized remaining granules were separated and characterized. The native starches were heated at 85 or 95°C for 30 min in excess water, and the granule envelope remnants were recovered by centrifugation for further characterization. The remaining granules after surface removal exhibited a lower gelatinization temperature and enthalpy, and swelled to a greater extent upon heating than the native counterpart. The amylopectin molecules in granule envelope remnants obtained at 95°C had larger Mw (weight‐average molar mass) and Rz (z‐average gyration radius) than those in remnants obtained at 85°C. The chemical composition and structure of granule envelope remnants obtained at 85°C were different from those obtained at 95°C for the same rice starch cultivar. The results imply that starch periphery may not be responsible for maintaining starch granule integrity during gelatinization and swelling. It is proposed that the composition and structure of the granule envelope remnant that maintains granule integrity are not constant but dynamic. The formation of a semi‐permeable membrane‐like surface structure during gelatinization and swelling is proposed to be a result of molecule entanglement after gelatinization.  相似文献   

20.
A new sweet potato breeding line, Kanto 116, was developed, featuring low gelatinization temperature and an altered starch fine structure. Starch granules from Kanto 116 showed an abnormal morphology characterized by cracking into granules. Starch content, amylose content and tuberous root appearance of Kanto 116 were similar to those of the control and the parents. Pasting temperatures of Kanto 116 starch determined by the Rapid Visco Analyser were 51.4 — 52.6 °C, approximately 20 °C lower than those of the control and parents starches. Onset, peak, and conclusion temperature of gelatinization, and gelatinization enthalpy of Kanto 116 starch determined by differential scanning calorimetry were 39.0 °C, 46.9 °C, 64.8 °C, and 8.8 J/g, respectively, and much lower than those of the control and parents starches. The chain‐length distribution of the amylopectin molecules, determined by high‐performance anion‐exchange chromatography, showed that Kanto 116 starch had a higher proportion of short chains (DP 6 — 11) and a lower proportion of chains between DP 12 — 28 than control and parent starches. The debranched β‐limit dextrin of Kanto 116 starch also showed that the proportion of both short and long B1 chains was different from those of the control and parents starches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号