首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 208 毫秒
1.
以大孔α-Al_2O_3陶瓷管(平均孔径为3μm)为载体,采用水热合成法在其表面形成一层纯硅沸石(Silicalite-1)修饰层,利用化学镀法在经过纯硅沸石修饰后的载体表面成功制备出致密钯复合膜,钯膜厚度约为5 μm.利用SEM对复合膜的结构和形貌进行了分析,并在350~500℃范围内对基于纯硅沸石修饰层的钯复合膜进行气体渗透测试表明,该沸石层修饰法制备的钯复合膜具有良好的氢渗透性.在500℃时,氧气渗透通量可达为0.12mol/(m~2·s),理想气体分离因子α(H_2/N_2)达到420.并对该钯膜与在载体表面直接制备的钯复合膜性能的差异进行了讨论.  相似文献   

2.
采用化学镀法,以镀液循环的方式在多孔Al2O3陶瓷管内表面制备了钯膜。利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对钯膜的形貌结构进行了表征,研究了蠕动泵转数对钯膜沉积的影响,并考察了钯膜在350~500°C之间的透氢性能。结果表明,随着蠕动泵转数增加,钯沉积量和致密性提高,然而当蠕动泵转数过快(如45r/min)时,钯膜产生缺陷,转数为30r/min时较适宜。随着温度和渗透压力的升高,H2的渗透通量增加,当温度为500°C、渗透压力为1×105Pa时,H2的渗透通量为0.24mol/(m2·s),理想气体分离因子α(H2/N2)为480。  相似文献   

3.
钯铜复合膜透氢性和稳定性研究进展   总被引:1,自引:1,他引:0  
对钯铜复合膜透氢性和稳定性的影响因素进行了综述。阐述了透氢性能影响因素包括膜载体、膜组成及膜厚度、操作压力、操作温度;稳定性能影响因素包括扩散障碍层、金属偏析和硫化氢中毒。并详细介绍了钯铜合金复合膜硫化氢中毒现象和金属偏析现象的机理研究。  相似文献   

4.
将不同材料分别用作复合膜的分离层和支撑体,是制备优良选择渗透性分离膜的重要方法之一.采用浇铸工艺将具有亲水性和高分离因子的聚乙烯醇(PVA)涂覆在高度透水性的反渗透(RO)聚酰胺(PA)膜表面,制备成渗透汽化(PV)分离有机物水混合物的PVA/PA复合膜.扫描电子显微镜(SEM)和原子力显微镜(AFM)以及红外光谱分析表明,PVA-PA层结构为一体化,膜表面光滑、致密,分离层上的微囊高度下降到4 nm左右.可以认为膜的优异传质性能取决于良好微结构包括PVA的化学交联和膜的结构形貌.铸膜液中PVA和交联剂的浓度以及热处理条件对复合膜分离性能的影响是明显的.这一新型的复合膜在环境温度下PV分离异丙醇(IPA)/水混合物的渗透通量(J)接近100 g·m-2·h-1,渗透物中的水含量(CP-H2O)大于99.5%.  相似文献   

5.
以多孔陶瓷为基体材料,通过化学镀法制备钯膜,但在基体表面预先修饰一层凝胶,化学镀之后再将凝胶热处理分解,研究凝胶修饰层对钯膜微观结构和透氢性能的影响.结果表明:基体修饰的钯膜均匀度和光亮度更高,透氢率是未修饰钯膜的3倍;由于凝胶修饰法阻止了钯膜进入基体孔道,膜附着力明显下降,成为未来需要解决的关键问题,凝胶修饰法制备钯膜的工艺仍需进一步优化.  相似文献   

6.
目前商用的致密型钯合金膜是钯银合金膜,较高的使用成本限制了其大规模的应用。而铌基钯合金膜因其较高的透氢率,机械性能及较低的使用成本等诸多优势受到了广泛关注。本文简要介绍了钯膜的透氢机理和影响钯膜透氢性能的因素,重点综述了以Pd/Nb/Pd复合膜为代表的新型夹层型复合膜透氢性能的研究进展,并对未来铌基钯合金膜的研究方向作出了展望。  相似文献   

7.
用擦涂法在α-Al_2O_3支撑体上引入ZrO_2层,利用晶种二次生长法,在α-Al_2O_3支撑体的ZrO_2层上引入UiO-66晶种,成功制备了UiO-66膜。通过XRD和SEM对UiO-66晶种及膜的结构和形貌进行了表征,考察了调节剂乙酸含量和ZrO_2过渡层对UiO-66膜结构和形貌的影响。在温度25℃、压力0.08MPa下,测试了气体分子的渗透性能,检测了UiO-66膜的完整性。考察了跨膜压差和温度对i-C_4H_(10)和n-C_4H_(10)两种气体在UiO-66膜上渗透速率的影响,探究了UiO-66膜对i-C_4H_(10)和n-C_4H_(10)两种气体的渗透选择性能。结果表明,采用多次擦涂法引入ZrO_2层后,获得了覆盖度高且膜层厚度均匀的UiO-66膜,膜厚度为5μm。UiO-66膜对i-C_4H_(10)和n-C_4H_(10)两种气体具有反向渗透性能,在跨膜压差为0.08MPa、温度为25℃时,UiO-66膜对i-C_4H_(10)/n-C_4H_(10)两种气体的理想渗透选择性达3.6,渗透速率分别为4.39×10-7和1.22×10-7 mol/(m2·s·Pa)。  相似文献   

8.
依据溶度参数原则和分离甲基叔丁基醚(MTBE)/甲醇(MeOH)混合物的选择渗透性,选择了聚乙烯醇(PVA)为复合膜的分离层材料,聚丙烯腈(PAN)、醋酸纤维素(CA)系列为支撑层的膜材料.初步讨论了膜材料和复合膜结构对分离性能的影响,给出了用不同成膜工艺制备的膜性能,获得了可用于有机/有机体系分离的性能优良的PVA/PAN和PVA/CA复合膜,以及CTA中空纤维渗透汽化膜.  相似文献   

9.
根据金属Pd的自催化特性 ,采用改进的PCD法制备致密超薄钯膜 ,同时考察了氢分压和操作温度对钯膜氢渗透性能的影响以及氢渗透过程的操作稳定性。结果发现 ,对金属层厚度为 0 .3~ 0 .4μm的超薄Pd/TiO2 复合膜 ,773K时的氢渗透性为 6 .3× 10 -6mol·m-2 ·s-1·Pa-1,H2 /N2 的分离系数为 1140左右。氢渗透超薄钯膜的稳定时间为 80h左右 ,而且钯膜的氢渗透速率在 6 73~ 773K的热循环过程中保持稳定  相似文献   

10.
以Nb49Ni25Ti26氢渗透合金或载玻片为基体,在不同温度下进行化学镀钯。化学镀钯液组成与工艺条件为:PdCl22g/LNaH2PO2·H2O10g/L,38%盐酸4mL/L,NH4Cl27g/L,28%氨水160mL/L,pH9.8±0.2,施镀时间2h。研究了镀液温度对镀速和Pd镀层表面形貌、耐蚀性及氢渗透性能的影响。结果表明,化学镀钯的最佳温度为60°C,此时镀速达到最大[为4.05mg/(cm2·h)],制备的Pd镀层均匀、致密,耐腐蚀性好,具有较强的氢渗透作用。  相似文献   

11.
介绍了钯复合膜的工作原理和性能特性,并从制备方法和多孔支撑体材料2个方面对钯复合膜分离器进行了总结。化学镀是制备复合膜最常用的制备方法,修饰层、还原剂渗透以及与PVD相结合的化学镀复合制备方法能够有效地改善钯复合膜的质量;增厚法、渗透法、填充法等钯膜修复方法则能够提高钯膜的成品率。目前主流的支撑体材料是多孔金属支撑体和多孔陶瓷支撑体,通过制备中间层、优化支撑体材料以及非匀质支撑体等方法能够提高钯复合膜的质量,多孔玻璃、多孔有机聚合物等新材料的开发也成为未来的发展方向。  相似文献   

12.
采用无电镀技术在多孔TiAl金属问化合物支撑体上制备了Pd膜.用SEM测定Pd膜的表面和断面的形貌,EDS测定从膜层到支撑层元素的组成,结果表明,支撑体表面形成了均匀致密的Pd膜,膜层的主要成分是单质Pd,所制钯膜的厚度为2~3μm.在350℃~500℃的温度范围内考察Pd膜透氢性能,当500℃,0.1 MPa时,H2的渗透系数为4.0×10-6mol·m-2·s-1·Pa-1,H2/N2的分离系数为30.测得本文所制备Pd膜的活化能为10.8 kJ/mol.  相似文献   

13.
制备了以聚乙烯醇(PVA)填充纳米SiO2改性膜为活性层,聚丙烯腈(PAN)超滤膜为底膜的PVA-SiO2/PAN杂化复合膜,并用于己内酰胺(CPL)脱水。用FTIR,SEM,XRD,TGA分别对膜进行了表征,并考察了膜中纳米SiO2粒子的质量分数、进料组分质量分数和温度对复合膜分离性能的影响。结果表明,引入纳米SiO2后,杂化膜的热稳定性明显提高。当膜中纳米SiO2质量分数为1.0%时,复合膜渗透蒸发分离性能最佳。60℃下此复合膜用于分离质量分数为40%的CPL溶液时,其总通量和分离因子分别达到2 177 g/(m2.h)和349。  相似文献   

14.
以钢网为支撑体,采用浸渍法制备具有内嵌柔性支撑体结构的聚二甲基硅氧烷(PDMS)复合膜,采用扫描电子显微镜对复合膜的形貌进行分析,探讨了制膜工艺对C_3气体/N_2体系气体渗透性能的影响。研究表明,与PDMS均质膜相比,在保持较高选择性的前提下,内嵌柔性支撑体PDMS复合膜不仅具有较高的气体渗透通量,同时表现出具有良好的柔韧可弯曲性能和机械强度。不同经纬结构的钢网所制备的柔性复合膜的气体渗透性能不同,结构疏松钢网制备的复合膜气体渗透速率较高;PDMS的制备工艺(如单体和交联剂的配比、固化反应时间及浓度)对复合膜的气体分离性能影响较大。在最佳制备工艺条件下,所制备的复合膜对N_2、C_3H_8、C_3H_6气体的渗透速率分别为8、106、178 GPU(1 GPU=10-6 cm3(STP)×cm~(-2)×s~(-1)×(cm Hg)~(-1);C_3H_8/N_2和C_3H_6/N_2的选择性分别为12和21。复合膜对烃类混合气也表现出良好的分离性能,并保持良好的渗透稳定性。  相似文献   

15.
全氟磺酸改性聚乙烯醇渗透汽化膜分离乙酸乙酯-水溶液   总被引:1,自引:1,他引:1  
以聚乙烯醇(PVA)为原材料,全氟磺酸(PFSA)为共混改性材料,以聚丙烯腈(PAN)中空纤维超滤膜为底膜制备了PVAfPAN、PVA-PFSA/PAN复合膜,并用于乙酸乙酯脱水.考察了共混涂膜液中PVA、PFSA配比,交联剂酒石酸(Tat)用量以及原料液温度与浓度对PVA、PAN、PVA-PFSA、PAN复合膜分离件能的影响.实验结果表明,Tac交联的PVA,PAN、PVA-PFSA/PAN复合膜均对水具有较好的分离选择性.共混涂膜液中PVA/PFSA质量比为1/1、Tac/PVA质量比为l/5时所制备的PVA-PFSA/PAN复合膜渗透汽化分离性能最佳.40下℃此复合膜用于分离98%(wt)的乙酸乙酯水溶液时,其渗透通量和分离因予分别为81.1 g·m-2·h-1和1890.同样条件下,与交联PVA/PAN复合膜相比,交联PVA-PFSA/PAN复合膜的渗透通量显著提高.  相似文献   

16.
采用溶液共混法制备聚乙烯醇(PVA)-壳聚糖(CS)/有机化累托石(OREC)系列复合膜,以X-射线衍射、扫描电镜、透射电镜表征了复合膜的形貌结构,研究了复合膜的热性能、溶胀性能及对牛血清蛋白的吸附-缓释性能。实验结果表明,在OREC质量分数为2%,PVA质量分数为10%时,复合膜具有良好的插层结构,且热稳定性最好,吸水率及对牛血清蛋白吸附率最大,缓释性能最好。与纯CS膜相比,此复合膜40%失重率时对应的热分解温度提高133℃,溶胀率提高16.1 g/g,对牛血清蛋白的吸附率提高16.5 mg/g。  相似文献   

17.
以多孔Al2O3为基体,先化学镀钯然后再电镀铜,最后进行合金化处理制备了一系列钯铜合金膜。通过SEM、XRD、金相显微镜以及透氢动力学分析等手段考察了膜的性能,并分析了测试温度和合金组成对膜的透氢率、压力指数n值及透氢活化能的影响。前驱体(Cu/Pd/Al2O3膜)在500℃、氢气气氛中经20 h可完全合金化。在所制备的Pd–Cu合金膜中,Pd61Cu39膜的透氢性能最佳。在350~600 C,Pd45Cu55、Pd51Cu49和Pd69Cu31膜的氢通量随温度的降低而减小;Pd61Cu39和Pd63Cu37膜的氢通量随温度的降低是先减小后增大,最后又减小。随温度的降低,Pd45Cu55、Pd51Cu49和Pd69Cu31膜的渗透系数n值有增大的趋势;Pd61Cu39和Pd63Cu37膜的n值变化较为复杂。在所测温度范围,Pd45Cu55、Pd51Cu49、Pd69Cu31膜的透氢活化能分别为32.9、24.1、21.8 kJ mol 1,而Pd61Cu39和Pd63Cu37膜则不存在固定的透氢活化能。XRD测试显示:室温下Pd59Cu41、Pd61Cu39和Pd63Cu37膜的晶体结构为bcc型;Pd45Cu55、Pd51Cu49、Pd69Cu31和Pd81Cu19膜的晶体结构为fcc型。  相似文献   

18.
PVA/ P(AA-Co-AN)/ PVA渗透汽化膜的研究   总被引:1,自引:0,他引:1  
制备一种PVA/P(AA-Co-AN)/PVA复合膜用于甲醇水溶液的分离,膜的主体部分P(AA-Co-AN)由添加纳米S iO2粉末的丙烯酸(AA)和丙烯腈(AN)通过溶液共聚制得,两侧为交联聚乙烯醇(PVA)。考察了复合膜在高质量分数甲醇水溶液中的溶胀性能,探讨了浸泡液温度及浸泡液质量分数对溶胀度的影响,测试了复合膜的力学性能。考察了不同单体配比〔n(AA)∶n(AN)〕所制备的复合膜在不同质量分数甲醇水溶液,不同温度下的渗透汽化性能。结果显示,复合膜在高质量分数甲醇水溶液中具有良好的溶胀性能及渗透汽化性能;在n(AA)∶n(AN)=1∶1下所制备的复合膜,对高质量分数甲醇水溶液分离效果最佳,60℃时分离w(甲醇)=98%的水溶液,分离因子可达1 534,通量为583 g/(m2.h)。  相似文献   

19.
采用溶胶–凝胶法配制了掺杂Zr4+以及未掺杂的2种有机硅态溶胶,以浸渍提拉的方式在已修饰的α-Al2O3载体上逐层涂布2种溶胶,并经过煅烧固化制备了二氧化硅复合膜。采用扫描电子显微镜对制备过程中的每一膜层表面形态结构进行表征。将二氧化硅复合膜应用于渗透汽化脱水,考察了不同温度以及不同进料含水率下的渗透汽化性能,并探究了强酸性环境(pH=2)对其性能的影响。实验结果表明:二氧化硅复合膜在75℃对85%(质量分数)异丙醇溶液渗透汽化脱水,其通量可达1 kg/(m2·h),渗透液含水率(质量分数)最高可到99.4%;在不同温度和含水率的条件下,二氧化硅复合膜都能保持良好的分离性能,具有良好的水热稳定性;长时间在强酸性环境(pH=2)中仍能保持稳定的分离性能,具有极强的耐酸性能。  相似文献   

20.
采用溶胶–凝胶法配制了掺杂Zr4+以及未掺杂的2种有机硅态溶胶,以浸渍提拉的方式在已修饰的α-Al_2O_3载体上逐层涂布2种溶胶,并经过煅烧固化制备了二氧化硅复合膜。采用扫描电子显微镜对制备过程中的每一膜层表面形态结构进行表征。将二氧化硅复合膜应用于渗透汽化脱水,考察了不同温度以及不同进料含水率下的渗透汽化性能,并探究了强酸性环境(pH=2)对其性能的影响。实验结果表明:二氧化硅复合膜在75℃对85%(质量分数)异丙醇溶液渗透汽化脱水,其通量可达1 kg/(m~2·h),渗透液含水率(质量分数)最高可到99.4%;在不同温度和含水率的条件下,二氧化硅复合膜都能保持良好的分离性能,具有良好的水热稳定性;长时间在强酸性环境(pH=2)中仍能保持稳定的分离性能,具有极强的耐酸性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号