首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于含p-GaN帽层的Si基GaN材料,实现了增强型GaN功率电子器件与数字电路单片集成技术的开发。在同一片晶圆上实现了增强型高压GaN器件、DCFL结构反相器和17级环形振荡器。高压GaN功率电子器件阈值电压VTH达到1.2 V,击穿电压V_(BD)达到700 V,输出电流I_D达到8 A,导通电阻R_(ON)为300 mΩ。基于E/D集成技术的DCFL结构反相器低噪声和高噪声容限分别为0.63 V和0.95 V;所研制17级环形振荡器在输入6 V条件下振荡频率345 MHz,级延时为85 ps。  相似文献   

2.
氮化镓(gallium nitride,GaN)材料因其优秀的物理特性受到越来越多研究者的青睐,但常关型GaN基高电子迁移率晶体管(high electron mobility transistor,HEMT)技术发展尚处于初级阶段。文中的研究对象是薄势垒常关型HEMT,该类器件可以很大程度地降低栅极区域的刻蚀损伤,因此在未来的电力电子市场中极具潜力。文中工作中制备基于SiON/Al2O3叠层栅介质的薄势垒型HEMT器件,在叠层介质的帮助下,器件的阈值电压与肖特基栅极器件几乎一致,可以实现常关型操作。其最大关态击穿电压可以达到700V,栅极耐压超过23V,在超过1000s的正栅应力测试中阈值电压漂移量小于1V。通过对其关态击穿、栅极击穿、栅极应力测试等特性的分析,对其可靠性方面有更为深入的认识,同时进一步地展现出薄势垒HEMT器件的结构优势。  相似文献   

3.
针对氮化镓(GaN)高电子迁移率晶体管(HEMT)电力电子器件应用面临的挑战,从阈值电压回滞效应、电流崩塌效应和增强型的实现等进行讨论。在GaN表面沉积Si_3N_4前进行原位氮(N)等离子体处理,制备GaN金属绝缘体半导体(MIS)HEMT器件,阈值电压回滞270 mV,600 V关态电压,动态电阻上升18%。增强型器件研究方面,提出一种采用氢(H)钝化p-GaN技术制备增强型GaN HEMT器件的新方法,器件的阈值电压为1.75 V,饱和电流为188 mA/mm。  相似文献   

4.
介绍了一种采用ICP干法刻蚀技术制备的槽栅常关型AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT)。采用原子层淀积(ALD)实现40 nm的栅介质的沉积。槽栅常关型AlGaN/GaN MOS-HEMT的阈值电压为+4.3 V。在栅压时,槽栅常关型AlGaN/GaN MOS-HEMT饱和电流为0.71 A,特征导通电阻为5.73 m?·cm~2。在栅压时,器件的击穿电压为400 V,关断漏电流为320μA。器件的开启与关断电流比超过了109。在栅压为-20 V时,槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电流为1.8 n A。高的开启与关断电流比和低的栅漏电流反映了界面具有很好的质量。  相似文献   

5.
GaN晶体管相对于MOSFET器件有更小的导通电阻和栅电荷,在高速、高功率密度应用中独具优势。但增强型GaN器件存在自身独特的物理特性,包括最大栅压限制、阈值电压偏低和存在反向导通电压等。因此,栅驱动电路需要针对器件特性进行定制化设计。在此首先重点分析GaN器件在高速开关过程中存在的主要问题及解决方案,然后详细描述基于HHNEC 0.35μm CD工艺设计完成的一款80 V高压半桥GaN栅驱动电路,验证相关驱动技术的正确性。由仿真和测试结果可见,驱动信号具有良好的延迟特性和小的电压过冲,能够很好地满足相关应用需求。  相似文献   

6.
绝缘栅氮化镓(GaN)基平面功率开关器件是下一代GaN功率电子技术的最佳选择。在此从Si基GaN金属绝缘体(氧化物)半导体(MIS/MOS)高电子迁移率晶体管(HEMT)器件面临的界面态和增强型栅产业化制备等方面入手,介绍了绝缘栅GaN基器件表界面态工程,高可靠栅介质及兼容互补MOS(CMOS)工艺的大尺寸Si基GaN器件制造等技术的研究进展,为绝缘栅GaN基平面功率开关器件的产业化应用奠定基础。  相似文献   

7.
杨媛媛 《电源学报》2020,18(4):186-192
针对现有的光伏逆变器半导体GaN(氮化镓,Gallium nitride)功率开关器件以难以适应现代电力电子系统高要求的问题,提出一种光伏逆变器半导体GaN功率开关器件结构改进方法。由于集电极-发射极击穿电压和饱和压降是衡量器件可靠性的重要指标,因此采用绝缘栅混合阳极二极管取代平面肖特基势垒二极管,解决集电极-发射集击穿电压和饱和压降输出不合理问题。改进后的器件阳极由肖特基栅极和欧姆阳极金属短接组成,阴极为欧姆金属;改进器件制作主要采用隔离、钝化、凹槽刻蚀、介质淀积等工艺,更好地实现功率开关和功率转换功能。经测试分析可知:改进后的功率开关器件能有效减少反向饱和漏电状况,且改进器件的温度与电压、比导通电阻成正比,高温下性能良好。  相似文献   

8.
碳化硅(SiC)功率金属-氧化物半导体场效应管(MOSFET)以其优越的性能受到广泛关注,但受限于器件设计和工艺技术水平,器件的潜力尚未得到充分发挥。介绍了SiC功率MOSFET的结构设计和加工工艺,采用一氧化氮(NO)栅氧退火工艺技术研制出击穿电压为1 800 V、比导通电阻为8mΩ·cm~2的SiC MOSFET器件,测试评价了器件的直流和动态特性,关断特性显著优于Si IGBT。评估了SiC MOSFET器件栅氧结构的可靠性,器件的栅氧介质寿命及阈值电压稳定性均达到工程应用要求。  相似文献   

9.
氮化镓GaN(gallium nitride)功率器件因其出色的导通与开关特性,能够实现系统高频化与小型化,有效提升系统功率密度。但是,增强型GaN功率器件由于其栅极可靠性问题,使其在电源管理系统中无法直接替换传统硅基功率MOSFET器件。为此,提出一种预驱动芯片,通过片内集成LDO与电平移位结构,实现兼容12~15 V输入,并输出5 V信号对GaN功率器件的栅极进行有效与可靠控制,达到兼容传统硅基功率器件应用系统的要求。此外,通过多芯片合封技术,将预驱动芯片与GaN功率器件实现封装集成,降低了寄生电感,使其应用可靠性进一步提升。  相似文献   

10.
杨帆  何亮  郑越  沈震  刘扬 《电源学报》2016,14(4):14-20
高性能GaN常关型功率开关器件的实现是目前研究的热点。槽栅结构GaN常关型MOSFET以其栅压摆幅冗余度大、栅极漏电流小等优势受到广泛关注。制备槽栅结构GaN常关型MOSFET需要的刻蚀方法会在栅极沟道引入缺陷,影响器件的稳定性。首先,提出选择区域外延方法制备槽栅结构GaN常关型MOSFET,期望避免刻蚀对栅极沟道的损伤;再通过改进选择区域外延工艺(包括二次生长界面和异质结构界面的分离及抑制背景施主杂质),使得二次生长的异质结构质量达到标准异质结构水平。研究结果表明,选择区域外延方法能够有效保护栅极导通界面,使器件具备优越的阈值电压稳定性;同时也证明了选择区域外延方法制备槽栅结构GaN常关型MOSFET的可行性与优越性。  相似文献   

11.
介绍了一种适用于600 V耗尽型氮化镓GaN(gallium nitride)器件的栅极驱动策略以及对应的驱动电路,并分析了采用耗尽型GaN功率器件的原因。驱动电路在功率管开启过程的2个阶段采用2种驱动强度的电流,在减小功率管开启过程中dv/dt的同时,保证功率管的开启速度。基于0.35μm BCD工艺对电路进行仿真验证,结果表明:在600 V输入电压的半桥驱动应用下,驱动电路在GaN功率器件阈值电压前提供700 mA驱动电流,达到阈值电压后提供190 mA稳定驱动电流,开关节点的dv/dt为150 V/ns,传输延迟加开启延迟为20 ns。  相似文献   

12.
硅-硅直接键合制造静电感应器件   总被引:1,自引:0,他引:1  
静电感应器件(StaticInductionDevice,SID)栅源击穿电压VGK不高一直是该类器件研制中存在的一个问题。用SI/SI键合技术代替高阻厚外延工艺,制造出一种不同于外延掩埋栅结构的掩埋栅结构——键合掩埋栅结构,从制造工艺和器件结构上提高了VGK。通过SITH器件的研制,证明了键合掩埋栅结构能够提高VGK和整个器件的电学性能。  相似文献   

13.
阐述了3 300 V 4H-SiC结势垒肖特基二极管(JBS)详细的设计和制备过程。4H-SiC N型外延层掺杂浓度为3.1×10~(15) cm~(-3),厚度为33μm。器件的终端采用了单区结终端扩展(JTE)结构。利用数值模拟优化了JTE结构的离子注入剂量、漂移区和有源区的结构参数,并根据模拟结果研制了4H-SiC JBS。测试结果显示,当正向导通电流达到30 A时,该器件的正向压降小于1.8 V,二级管的反向击穿电压约为4 000 V。  相似文献   

14.
何亮  刘扬 《电源学报》2016,14(4):1-13
氮化镓(GaN)材料具有优异的物理特性,非常适合于制作高温、高速和大功率电子器件,具有十分广阔的市场前景。Si衬底上GaN基功率开关器件是目前的主流技术路线,其中结型栅结构(p型栅)和共源共栅级联结构(Cascode)的常关型器件已经逐步实现产业化,并在通用电源及光伏逆变等领域得到应用。但是鉴于以上两种器件结构存在的缺点,业界更加期待能更充分发挥GaN性能的"真"常关MOSFET器件。而GaN MOSFET器件的全面实用化,仍然面临着在材料外延方面和器件稳定性方面的挑战。  相似文献   

15.
氮化镓(GaN)功率电子器件具有优异的电学特性,在高速、高温和大功率领域具有十分广阔的应用前景,满足下一代功率管理系统对高效节能、小型化和智能化的需求。P型栅和Cascode结构的常关型GaN器件已逐步实现产业化,但鉴于这两种器件结构本身存在的缺点,常关型GaN MOSFET器件方案备受关注。目前,GaN功率开关器件主要朝高频化发展,封装形式从直插型(TO)封装向贴片式(QFN)封装演变,为进一步消除寄生效应对器件高速开关特性造成的不良影响,驱动和功率器件集成的GaN功率集成电路(IC)技术被采用,单片集成的全GaN功率IC是未来的发展方向。  相似文献   

16.
程俊红  肖震霞 《电源学报》2020,18(4):193-199
测试半导体GaN功率开关器件灵敏度对掌握器件性能具有重要意义,提出一种新的半导体GaN功率开关器件灵敏度测试技术。通过分析半导体GaN功率开关器件的导通电阻与击穿电压关系、空穴电流与栅极电流关系掌握功率开关器件击穿机理,在此基础上,测试半导体GaN功率开关器件灵敏度;根据灵敏度测试原理与微频通道衰减值周期检查原理,测量功率开关器件微频信号功率和微频通道衰减值,汇总微频通道衰减值和最后一次开关灵敏时的衰减值,得到半导体GaN功率开关器件灵敏度。实验结果表明:所提测试技术测量半导体GaN功率开关器件灵敏度过程中,平均测试误差为0.03 dB,仅平均花费9.42ms,是一种高效、可靠的半导体GaN功率开关器件灵敏度测试技术。  相似文献   

17.
基于现有工艺平台设计一款具有自主知识产权的2 500 V/50 A非穿通型(NPT)压接式IGBT芯片。芯片有源区元胞采用平面型结构,结合器件仿真结果采用抗动态雪崩及抗闩锁设计,同时采用载流子增强技术来降低器件的饱和压降。芯片终端区采用场环加多级场板的复合结构,结合横向的场终止技术,实现高效率的终端结构设计。将此设计进行流片验证,测试结果显示击穿电压3 500 V以上,饱和压降2.65 V,阈值电压6.5 V,符合仿真预期和芯片设计要求。  相似文献   

18.
碳化硅MOSFETs开关速率快,耐压高,在逆变器应用领域前景广阔。平面栅MOSFETs因其成熟的工艺是最先被商业化的器件。在平面栅MOSFETs的设计中,降低导通电阻和提高芯片的电流密度是重要的开发目标。基于自主研制的1 200 V及1 700 V SiC MOSFETs,研究了载流子扩展层技术、JFET注入技术以及元胞结构对器件电学特性的影响。测试结果表明采用方形元胞设计的SiC MOSFET的电流明显大于采用条形元胞设计的电流,JFET注入对阈值电压的影响比载流子扩展层技术更小。  相似文献   

19.
覃孟  潘革生 《电源学报》2021,19(5):158-164
GaN功率开关器件界面态和缓冲层中深能级陷阱会导致高压电流坍塌和动态导通电阻退化.为提升高性能GaN功率开关器件抗高压性能,改善动态导通电阻退化能力,应采用极值性PEALD-AlN钝化技术设计高压状况下GaN功率开关器件,实现单片集成器件的目的,在去氧化层和氮化处理GaN功率开关器件表面后,采用高温LPCVD-SiNx...  相似文献   

20.
研究了"高K栅"介质HfO_2和电荷失配对4H-碳化硅(SiC)基半超结垂直双扩散金属氧化物半导体场效应晶体管(VDMOSFET)单粒子烧毁(SEB)和单粒子栅穿(SEGR)效应的影响,并给出了一种加固结构。研究结果表明,HfO_2介质的应用对器件SEB效应没有影响,但栅氧化层电场峰值降低了83%,对SEGR效应有加固作用。结合HfO_2介质层和增加沟道掺杂浓度两种方法的加固结构,在不影响器件阈值电压的同时,器件的SEB闽值电压为1 290 V,提高了28%;栅氧化层的电场峰值为2.2×10~6V/cm,降低了80%。当N柱区掺杂浓度大于P柱区时,器件的抗SEB能力有所增强,但N柱区掺杂浓度小于P柱区时,器件的抗SEB能力减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号