首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文以Li2CO3 、MnO2为原料,采用微波热处理合成锂离子电池正极材料LiMn2O4,研究了热处理温度,Li/Mn摩尔比对产物结构和电化学性能的影响,同时研究了微波热处理和传统热处理两种加热方式的差别.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试分别对产物的结构、形貌及电化学性能进行表征,结果表明:采用微波法在750℃保温15 min,快速地制备出尖晶石型LiMn2O4,纯度高,尺寸分布均匀,约100-300 nm;于0.1C倍率下,以微波法制备的正极材料首次放电比容量可达112.38 mA·h/g,1C倍率充放电50次循环后,容量保持率为91.6%;以传统方法制备的正极材料0.1C倍率下首次放电比容量为94.07 mA·h/g,1C倍率充放电50次循环后,容量保持率为71.4%  相似文献   

2.
采用固相烧结法合成了具有Li1+XV3O8结构组成为Li1+XV2.9M0.1O8(M=B,Bi,Ce)和Li1+XV3O7.9F0.1的掺杂正极材料,充放电循环实验表明,在所有掺杂样品中,理论组成为Li1+XV3O7.9F0.1的样品的放电性能和循环性能是最好的,400℃,500℃,600℃烧结的掺氟样的充放电循环实验表明,400℃样品的首次放电容量为235 mAh/g,40循环的放电容量为176 mAh/g,表现出较好的放电性能和循环性能.  相似文献   

3.
以PEG为新型碳源,采用简单固相法合成了锌离子掺杂的锂离子电池正极材料LiMn0.95Zn0.05PO4/C。采用XRD和电化学测试分别研究了预分解温度对LiMn0.95Zn0.05PO4/C结构及性能的影响。实验结果表明预分解温度为500℃合成的LiMn0.95Zn0.05PO4/C具有最好的放电性能,0.02 C首次放电比容量可以达到131.7 mA.h.g-1,达到文献较好水平。考察了最佳条件合成样品的倍率性能和循环伏安特性。  相似文献   

4.
为了提高LiFePO4的电化学性能,用Mg2 对LiFePO4进行掺杂,以Li3PO4为锂源、Mg(OH)2为掺杂源,采用固相法合成锂离子电池正极材料Li1-xMgxFePO4(x=0.005、0.01、0.02和0.03).通过X射线衍射分析及电化学测试,研究了Mg掺杂对材料的结构和电化学性能的影响.实验研究表明,掺入少量的Mg2 ,可以减小晶胞体积,提高LiFePO4的循环性能和比容量.当Mg的掺入量为2 mol%时,以0.1C倍率充放电,Li0.98Mg0.02FePO4最大放电容量为123.6 mAh/g.  相似文献   

5.
采用燃烧法,在不通入惰性气体保护的环境下,合成了Mg2+ 、Zr4+掺杂的磷酸铁锂(LiFePO4)正极材料. 通过X射线衍射、傅立叶变换红外光谱、扫描电子显微镜、恒电流充放电循环技术,对材料的结构和电化学性能(放电性能、循环性能)进行表征. 结果表明,Mg2+ 、Zr4+的掺入没有改变材料的橄榄石型结构,但显著改善了材料的电化学性能,其中Zr4+掺杂的LiFePO4具有更高的放电比容量,在0.2 C放电倍率下最高达到143.4 mAh/g,且循环性能良好(经50次循环后放电比容量为126.3 mAh/g).  相似文献   

6.
采用共沉淀法和成LiNi0.8Co0.2O2,探讨影响锂离子电池正极材料LiNi0.8Co0.2O2电化学性能及结构的因素.为了提高材料的电化学性能,对材料进行了掺杂改性的研究,分别掺入Al、Mn、Mg和Fe四种元素.通过在2.8~4.2V范围内的充放电测试分析,掺入Mn的正极材料LiNi0.8Co0.1Mn0.1O2具有最高的放电比容量以及最低的容量损失,其首次放电容量为168.84 mAh/g,十次循环后的放电容量为166.9 mAh/g.  相似文献   

7.
锂离子电池正极材料LiNixFe1-xPO4的制备及其性能   总被引:2,自引:0,他引:2  
为提高锂离子电池正极材料LiFePO4的充放电性能,用Ni对LiFePO4进行掺杂,研究了Ni掺杂量对LiFePO4性能的影响,在LiNixFe1-xPO4(x=0,0.01,0.03,0.05,0.10)材料中,LiNi0.03Fe0.97PO4具有比LiFePO4更好的电化学性能,用80mA/g的电流进行充放电时,第2次放电比容量为133.278mAh/g,循环20次后为127.655mAh/g.  相似文献   

8.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er3+,Y3+,Gd3+的试样具有优良的循环性能和倍率性能,而掺杂Nd3+,La3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Gd0.01FePO4的电化学性能最佳,在C/10和1C(1C=120 mA.g-1)倍率下放电容量均最大。  相似文献   

9.
利用 N a 2HP O4、 N a VO3 和 N a 2WO4·2H2O合成了 K e g g i n型 H4PW1 1VO4 0杂多酸, 并将其与1 - 丁基 - 3 - 甲基咪唑溴离子液体反应, 生成[ Bm i m] 4PW1 1VO4 0杂多化材料。利用 XR D和I R对催化剂进行表征, 结果表明, 所合成的催化剂具有 K e g g i n型结构。以S i O2 为载体制备了负载型的杂多酸催化剂 4PW1 1VO4 0/ S i O2,以 H2O2 为氧化剂, 考察了 H2O2 体积、 催化剂质量、 反应温度、 反应时间等因素对罗丹明B降解率的影响。实验结果表明, 最优的反应条件为: H2O2 体积为3mL、 催化剂质量为0. 3 5g、 反应温度为4 0℃、 反应时间为1. 5h。在此条件下, 罗丹明B的降解率达9 8. 4%。催化剂具有良好的重复使用性能, 多次重复使用后, 罗丹明B的降解率没有明显的降低。  相似文献   

10.
采用共沉淀法制备了用于催化湿式氧化工艺的 C u O - Z n O -C e O2 / A l 2O3 催化剂, 采用 X射线衍射 ( XR D)对催化剂进行了表征, 并以实验室配置的苯酚溶液为目标污染物, 考察了C u O - Z n O -C e O2 / A l 2O3催化剂的活性和稳定性。结果表明, C e的加入有提高催化剂体系分散度的作用; 催化剂中的活性组分 C u、 Z n、 C e分别以 C u O、 Z n O、 C e O2的形式存在, 并成功负载于载体 A l 2O3; 对于初始质量浓度为9 0 0m g / L的实验室配置苯酚溶液, 在反应温度为1 8 0℃, 压力为4MP a, 搅拌速度为3 0 0r /m i n, 催化剂加入量为0. 1g /( 1 0 0mL) , 反应时间3 0m i n时, 化学需氧量( COD) 去除率达到9 5%。  相似文献   

11.
采用溶胶-凝胶法合成了LiCoPO4与钇掺杂的正极材料,并研究了该材料的晶型结构、充放电以及循环性能。试验表明:少量Y3+掺杂不影响LiCoPO4的晶格结构;合成的改性正极材料Li0.99Y0.01CoPO4在0.1C倍率下首次放电比容量达到123.0 mAh/g,相比纯相LiCoPO4提高了8%,20次循环后Li0.99Y0.01CoPO4的放电比容量是78.6 mAh/g,改性材料在电化学性能上得到较大提升。  相似文献   

12.
通过Mg+金属掺杂及流变相制备方法来改善橄榄石结构的LiFePO4的电化学性能.研究了不同掺杂量和不同制备方法对材料结构性能和电化学性能的影响.SEM,XRD,以及电化学测试结果表明,Mg掺杂可以较大程度提高材料电化学性能;0.1 C倍率下首次充电容量达到140.7 mAh/g.利用流变相法制备的材料粒度更小,其电化学性能得到进一步提高,0.1 C时放电比容量达到了147.5 mAh/g.  相似文献   

13.
溶胶-凝胶法所制LiCoPO_4及其掺碳材料的电化学性能   总被引:1,自引:1,他引:0  
采用溶胶-凝胶法制备了LiCoPO4,并对LiCoPO4进行了掺碳改性研究。实验结果表明:n(Li)∶n(Co)=1.5∶16,50℃下煅烧8 h所得样品性能最佳。在0.1C倍率下,样品的首次充电比容量为135.17 mAh·g^-1,首次放电比容量是113.9 mAh·g^-1,其电化学性能较好。合成掺碳15%的LiCoPO4/C复合材料,在0.1C条件下放电比容量达到121.2 mAh·g^-1,相比纯相LiCoPO4 113.9 mAh·g^-1有很大提高。在1C倍率下复合材料的放电比容量是103.5 mAh·g^-1,相比纯相85.4 mAh·g^-1提高很多,20次循环后复合材料还保持有62.3 mAh·g^-1的放电比容量。碳掺杂不仅提高了材料的电导率,还提高了材料的电化学性能。  相似文献   

14.
磷酸铁锂被认为是最有可能应用于锂离子动力电池的正极材料.采用化学研磨法制备了磷酸铁锂,并对其结构和电化学性能进行了研究.结果表明:相对于传统高温固相法,化学研磨法可以有效细化磷酸铁锂的颗粒和晶粒,所得材料0.1 C放电容量为132 mAh/g,明显高于传统固相法112 mAh/g的容量.  相似文献   

15.
使用廉价的三价铁Fe2O3为铁源,以蔗糖为还原剂和导电剂,通过热还原法制备了LiFePO4/C复合材料。运用TGA—DAT曲线对反应机制进行了分析,利用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电和循环伏安测试等测试手段对不同覆碳量合成材料进行了表征和电化学性能检测。结果表明:所合成的LiFePO4均为纯相,其中含碳1.07%的样品0.2C倍率下的放电比容量为143.32mAh/g。  相似文献   

16.
以SnCl4和硫代乙酰胺为原料,采用水热法制备了纳米SnS2,并对其结构和电化学性能进行了研究.研究表明:电流密度对SnS2电极的电化学性能有很大的影响.0.1 c放电,首次充电容量可以达到448.7 mAh/g,但20次循环后容量衰减很大;而O.5 C放电,首次充电容量虽然不高,但是30次循环后容量可以保持在一个较高的水平.  相似文献   

17.
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vo1% H2 atmosphere.The effects of different iron sources,including Fe(OH)3 and FeC2O4·2H2O,on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed.The crystal structure,the morphology,and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD),scanning electron microscopy (SEM),laser particle-size distribution measurement,and other electrochemical techniques.The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeCeO4·2H2O at 700℃ have the similar electrochemical performances.The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh·g-1 and 137.4 mAh.g-1 at the C/5 rate,respectively.However,the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher,which is significant for the improvement of the capacity of the battery.  相似文献   

18.
采用固相法制备了具有橄榄石型结构的微米Li1.12Fe0.98Co0.02PO4/C样品.通过充放电循环、循环伏安实验、交流阻抗、XRD衍射、红外光谱、扫描电镜等现代技术研究了制备的样品的电化学性能.研究表明,在2 C倍率电流下,制备的Li1.12FePO4/C和Li1.12Fe0.98Co0.02PO4/C样品第1循环的放电容量分别为64.8和108.9 mAh.g-1,第30循环的放电容量分别为67.3和110.1 mAh.g-1.因此,掺钴的富锂Li1.12Fe0.98Co0.02PO4/C样品具有明显改善的大电流放电性能.  相似文献   

19.
采用固相反应法合成了锂离子电池正极材料Li0.97Re0.01FePO4(Re=Er,Y,Gd,Nd,La),采用X射线衍射、恒电流充放试验对掺杂试样的微观结构和电化学性能进行测试。试验结果表明:掺杂稀土金属离子对LiFePO4的晶体结构没有影响,与LiFePO4相比,掺杂Er^3+,Y^3+,Gd^3+的试样具有优良的循环性能和倍率性能,而掺杂Nd^3+,La^3+的试样的循环性能和倍率性能较差。掺杂试样中,Li0.97Re0.01FePO4的电化学性能最佳,在C/10和1C(1C=120mA·g^-1)倍率下放电容量均最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号