首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Promising fluorescent probes from phycobiliproteins   总被引:2,自引:0,他引:2  
Phycobiliproteins are brilliant-colored and water-soluble pigment-protein complexes existing widely in cyanobacteria, red algae, and cryptophytes. They function as predominant light-harvesting complexes to absorb the sunlight from 480 to 660 nm, and efficiently transfer the energy to chlorophyll a. The phycobiliproteins are classified into three types based on their absorption spectra: phycoerythrin (PE), phycocyanin (PC), and allophycocyanin (AP). They are all composed of hetero-subunits /spl alpha/ and /spl beta/ and commonly exist in trimer (/spl alpha//spl beta/)3 or hexamer (/spl alpha//spl beta/)6 made up of equimolar monomer (/spl alpha//spl beta/). One monomer contains two to five chromophore phycobilins. In cyanobacteria and red algae, phycobiliproteins assemble a macromolecular particle, phycobilisome. Efficient excitation energy coupling among the chromophores in the phycobiliprotein trimer/hexamer and among the phycobiliproteins in the phycobilisome gives them some special spectroscopic properties superior to organic fluorescent dyes. These properties make the phycobiliproteins become promising fluorescent probes used in various fields of biological investigation.  相似文献   

2.
Modeling of three-phase transformers with three-limb cores is important, such units are very ubiquitous and are asymmetric due to the different lengths of the three limbs of the core. It is, therefore, important to devise a measuring procedure, where the (/spl lambda/-i) characteristics of the three limbs and the zero-sequence (/spl lambda//sub 0/-i/sub 0/) characteristic due to the tank can be determined. A simulation program is developed so that currents at no-load and symmetric or asymmetric loads can be computed. Measured currents are compared with computed results for 2.3-kVA and 45-kVA units.  相似文献   

3.
In this study, laser reshaping of porcine septal cartilage was performed using an Nd:YAG laser (/spl lambda/=1.32 /spl mu/m), while changes in acoustic waves were observed, in an attempt to develop technique to monitor the reshaping process. Concurrent measurements of strain (during tensile compression and tension, as well as flexure), temperature, and a 5-MHz ultrasonic signal were recorded during laser irradiation (/spl lambda/=1.32 /spl mu/m, 4 W, 13 s). The sample was set up in a water bath to enhance acoustic coupling. From the ultrasonic signal, both time of flight (TOF) and signal amplitude as reflected from the back wall of the cartilage were extracted and correlated with temperature and strain measurements. The onset of stress relaxation of the cartilage generally occurred between 50/spl deg/C and 60/spl deg/C. While TOF measurements indicated a generally constant increase in the speed of sound of the cartilage during the irradiation period, the amplitude of the reflected acoustic signal correlated directly with the stress relaxation of the cartilage. At the point of stress relaxation, the amplitude of the acoustic signal consistently attenuated to roughly 50% of its original magnitude.  相似文献   

4.
Surface acoustic wave (SAW) filters for low-frequency (38-65 MHz) applications have been developed using a radio frequency (RF)-magnetron-sputtered ZnO film on fused-quartz substrates. SAW propagation characteristics such as electromechanical coupling coefficient (K/sup 2/), SAW phase velocity (v), insertion loss, and temperature coefficient of delay (TCD) have been measured. The intergidital transducer (IDT)/ZnO/fused-quartz device structure yields almost zero TCD (1 ppm/spl middot//spl deg/C/sup -1/) with 0.316 /spl lambda/ thick ZnO layer (for the device operating at 60 MHz). Alternately, an overlayer of positive TCD material (ZnO itself) has also been deposited on the IDT/ZnO(<0.316 /spl lambda/)/fused-quartz device at a low substrate temperature to reduce the TCD. A modified layered structure consisting of ZnO/IDT/ZnO/fused quartz yields almost zero TCD (-3 ppm/spl middot//spl deg/C/sup -1/) with a 5.3-/spl mu/m-thick ZnO overlayer and a 8.1-/spl mu/m-thick (0.183 /spl lambda/) ZnO bottom layer. Experimentally obtained SAW propagation characteristics have been compared with the theoretical results.  相似文献   

5.
Design, fabrication, and characterization of high-performance Al/sub x/Ga/sub 1-x/N-based photodetectors for solar-blind applications are reported. Al/sub x/Ga/sub 1-x/N heterostructures were designed for Schottky, p-i-n, and metal-semiconductor-metal (MSM) photodiodes. The solar-blind photodiode samples were fabricated using a microwave compatible fabrication process. The resulting devices exhibited extremely low dark currents. Below 3fA, leakage currents at 6-V reverse bias were measured on p-i-n samples. The excellent current-voltage (I--V) characteristics led to a detectivity performance of 4.9/spl times/10/sup 14/ cmHz/sup 1/2/W/sup -1/. The MSM devices exhibited photoconductive gain, while Schottky and p-i-n samples displayed 0.09 and 0.11 A/W peak responsivity values at 267 and 261 nm, respectively. A visible rejection of 2/spl times/10/sup 4/ was achieved with Schottky samples. High-speed measurements at 267 nm resulted in fast pulse responses with greater than gigahertz bandwidths. The fastest devices were MSM photodiodes with a maximum 3-dB bandwidth of 5.4 GHz.  相似文献   

6.
A generalized plane strain condition is assumed for an edge interfacial crack between die passivation and underfill on an organic substrate flip chip package. C4 solder bumps are explicitly modeled. Temperature excursions are treated as loading conditions. The design factors studied include underfill elastic modulus, underfill coefficient of thermal expansion (CTE), fillet height, and die overhang. Varying underfill modulus and CTE produces a different stress field at underfill/die passivation interface, different stress intensity factor (SIF), and phase angle (/spl psi/) even under the same loading condition. The baseline case uses underfill with elastic modulus of 6 GPa, CTE of 36 ppm//spl deg/C and fillet height equal to half die thickness. Four more cases involving underfill material properties are investigated by varying elastic modulus between 3 and 9 GPa, and by varying CTE between 26 and 46 ppm//spl deg/C. The effect of fillet height is also studied by assuming no fillet and full fillet, i.e., fillet height equal to die thickness. Finally, two cases concerning the influence of die overhang, defined as the nominal distance between outermost solder joint and die edge, are investigated. Fracture parameters, including energy release rate (G) and phase angle (/spl psi/), are evaluated as a function of dimensions. Underfill material properties (elastic modulus and CTE), fillet configuration, and die overhang can be optimized to reduce the risk of underfill delamination in flip chip or direct chip attach (DCA) applications.  相似文献   

7.
A thin Zn filter (/spl sim/300 /spl mu/m) and relatively low X-ray tube voltage (/spl sim/45 kV) is recommended for X-ray inspection of surface-mounted device solder joints on printed wiring boards (PWBs). An optimal filter minimizes the Si dose that could result in cumulative damage to sensitive integrated circuit (IC) nodes, yet provides good contrast for metals such as Cu traces on PWBs and device solder balls. While we expect orders of magnitude Si dose reductions when effective filters are inserted, a properly chosen filter should not attenuate the portion of the white X-ray spectrum required to image Cu, Sn, and Pb (solder balls). Some X-ray inspection suppliers can achieve a Si dose of as little as 0.060 rads, while other X-ray inspection suppliers, not yet optimized for minimum dose, may use as much as four orders of magnitude more dose. We used thermo luminescent detectors (TLDs) to measure the X-ray dose that IC product shipments would encounter during a shipping process, for example, as personal baggage or cargo, as /spl les/0.050 rads.  相似文献   

8.
We report high power (>36 W) with beam propagation factor M/sup 2//spl sim/2 in a diode end-pumped Tm:LiYF/sub 4/ (Tm:YLF) laser generating output near the 1.91-/spl mu/m region. Using the 1.91-/spl mu/m emission and high brightness achieved with the Tm:YLF laser we resonantly end-pump the Holmium /sup 5/I/sub 7/ manifold in Ho:YAG and demonstrate /spl sim/19 W of continuous-wave (CW) output. The diode-to-Holmium optical to-optical conversion efficiency achieved is /spl sim/18%. Using a CW pumped and repetitively Q-switched configuration, the Tm:YLF pumped Ho:YAG laser achieves >16 W of output power with an M/sup 2//spl sim/1.48 at 15 kHz. A Q-switched frequency range of 9 to >50 kHz is also achieved.  相似文献   

9.
2/spl times/10 Gb/s quaternary intensity modulation signals (4-IM) can be generated by combining two modulation signals with unequal amplitudes in quadrature phases or orthogonal polarizations. Two 10-Gb/s nonreturn-to-zero (NRZ) amplitude-shift keying (ASK) signals and a quadrature phase-shift keying (QPSK) modulator allow to generate 4-IM with the same bandwidth as an NRZ-ASK signal (QASK). Measured sensitivity at a bit error rate (BER) of 10/sup -9/ and chromatic dispersion (CD) tolerance are -21.6 dBm and /spl sim/+130 ps/nm, respectively. Two duobinary 10-Gb/s data streams and a QPSK modulator allow to generate a 9-constellation point quaternary intensity signal (QDB), with the same bandwidth as a duobinary signal. A stub filter with frequency response dip at 5 GHz was used to generate the duobinary signals. Detected as a 4-IM, this scheme features a sensitivity and a CD tolerance of -21.2 dBm and /spl sim/+140 ps/nm, respectively. By combining the two duobinary 10-Gb/s data streams with unequal amplitudes in orthogonal polarizations, a 9-constellation point quaternary intensity signal was also obtained (QPolDB). Sensitivity and CD tolerance were -20.5 dBm and /spl sim/+340 ps/nm, respectively. They became -18.4 dBm and /spl sim/+530 ps/nm, respectively, when the frequency response dip of the stub filter was changed to 6 GHz. A polarization and phase-insensitive direct detection receiver with a single photodiode has been used to detect all generated quaternary signals as 4-IM signals.  相似文献   

10.
For the optimization of electrical insulation design for high temperature superconducting (HTS) cable, evaluation of electrical insulation characteristics especially for butt gap of LN/sub 2/ impregnated cold dielectric (CD) which consists of the wrapped tape insulation impregnated with LN/sub 2/ plays an important role. This paper presents partial discharge (PD) inception and breakdown characteristics in LN/sub 2/ impregnated butt gap model which modeled a weak point of the wrapped tape insulation impregnated with LN/sub 2/ and cable model with short length with polypropylene laminated paper (PPLP/sup /spl reg//), Nomex/sup /spl reg// paper and cellulose paper. PD current pulse was found to have a steep rise time of /spl sim/ ns and amplitude of /spl sim/ tens /spl mu/A at PD inception voltage region. Little dependency of breakdown stress on the insulating material is found. PD inception stress is almost independent of insulation thickness of 1 to 3 mm. The requirement insulation thickness for 66 kV class HTS cable is estimated to be /spl sim/ 5 mm under PD-free condition from viewpoint of long-term reliability.  相似文献   

11.
The present paper is mainly devoted to phenomena occurring in point-plane electrode geometry, where breakdown is the result of the initiation and propagation of prebreakdown phenomena called "streamers". In this configuration, an investigative study of the streamer initiation processes, requiring very high electric field strengths (/spl sim/ MV/cm), and of propagation (requiring low electric field, /spl sim/ kV/cm) can easily be carried out for negative streamer development as well as for the positive case. From analysis of experimental results in pure liquids the physical processes connected with streamer initiation and propagation, particularly the electronic ones, are presented and discussed. Estimations of the main parameters of slower subsonic streamers and of the faster filamentary ones (such as field strength at the streamer tip, field inside the channel, charge density, etc.) have been obtained from qualitative considerations and compared to experimental data.  相似文献   

12.
We have proposed a hybrid procedure for determining spectroscopic parameters for uniaxial solid-state laser crystals. Using our procedure, the spectroscopic properties of Nd:GdVO/sub 4/ were evaluated and compared to those of Nd:YVO/sub 4/. As a result, the peaks of absorption and stimulated emission cross sections of Nd:GdVO/sub 4/ in /spl pi/-polarization were determined to be 2.6 and 10.3/spl times/10/sup -19/ cm/sup 2/, respectively, and were smaller than those of Nd:YVO/sub 4/. On the other hand, the fluorescence lifetime of 1 at% Nd:GdVO/sub 4/ was evaluated to be 83.4 /spl mu/s, and was similar to 84.1 /spl mu/s of 1 at% Nd:YVO/sub 4/. Therefore, the product of stimulated emission cross section and fluorescence lifetime (/spl sigma//sub em//spl tau//sub f/ product) of Nd:GdVO/sub 4/ was smaller than that of Nd:YVO/sub 4/ under 1 at% of Nd/sup 3+/ doping concentration. The radiative lifetime of spontaneous emission of Nd:GdVO/sub 4/ was 168 /spl mu/s and was 1.9 times longer than that of Nd:YVO/sub 4/. Because of the low value of radiative quantum efficiency of Nd:GdVO/sub 4/ (50%), careful cavity design is required for creating a well performing solid-state laser with Nd:GdVO/sub 4/, based on the larger /spl sigma//sub em//spl tau//sub f/ product rather than the /spl sigma//sub em//spl tau//sub f/ product of Nd:YAG.  相似文献   

13.
The fabrication and characteristics of edge-emitting quantum-cascade (QC) lasers and microlasers with monolithically integrated deeply etched semiconductor-air Bragg-mirrors based on GaAs is reported. We observe a reduction of the threshold current density by 25% and an increase of the operation temperature by 23 K to a maximum of 315 K for 800 /spl mu/m long devices by employing Bragg-mirrors. Devices with ultra-short cavities of about 100 /spl mu/m (/spl sim/40 times the wavelength) operate up to 260 K. At 80 K, these devices show threshold currents as low as 0.63 A and output levels up to 56 mW. In these devices, longitudinal single mode operation with output levels exceeding 7.7, 5.6, and 2.8 mW was measured at 180, 200, and 240 K, respectively. This can be attributed to the limited gain bandwidth of QC lasers and the large mode spacing in these devices. By temperature control the emission wavelength can be tuned without mode jumps over 80 nm. The feasibility to pre-select the emission wavelength by a direct control of the Fabry-Perot mode was demonstrated by microlasers with 1 /spl mu/m cavity length difference.  相似文献   

14.
Infrared focal plane arrays (IRFPAs) are a critical component in advanced infrared imaging systems. IRFPAs are made up of two parts, a detector array and a readout integrated circuit (ROIC) multiplexer. Current ROIC technology has typical pitch sizes of 20/spl times/20 to 50/spl times/50 /spl mu/m/sup 2/. In order to make antenna-coupled detectors suited for infrared imaging systems, two-dimensional (2-D) arrays have been fabricated that cover a whole pixel area with the penalty of increasing the noise figure of the detector and, therefore, reducing its performance. By coupling a Fresnel zone plate lens to a single element antenna-coupled detector, infrared radiation can be collected over a typical pixel area and still keep low-noise levels. A Fresnel zone plate lens coupled to a single-element square-spiral-coupled infrared detector has been fabricated and its performance compared to single element antenna-coupled detectors and 2-D arrays of antenna coupled detectors. Measurements made at 10.6 /spl mu/m showed a two-order-of-magnitude increase in SNR and a /spl sim/3/spl times/ increase in D/sup */ as compared to 2-D arrays of antenna-coupled detectors.  相似文献   

15.
We report on solar-blind metal-semiconductor-metal (MSM) detectors fabricated on stacks of (Al,Ga)N layers with different Al mole fraction. These structures were grown by molecular beam epitaxy on sapphire substrates to allow backside illumination and a low-temperature GaN buffer layer. They consist of a 0.3-0.4-/spl mu/m active layer grown on a thick (Al,Ga)N window layer (/spl ap/1 /spl mu/m) that is transparent at the wavelength of interest. Different Al contents were used in the window layer. We observed that, in general, samples with a high Al content were cracked, which is explained in terms of mechanical strain. MSM photodetectors fabricated on these samples showed large leakage currents that were correlated with the crack density. In order to reduce the strain and eliminate the cracks, we inserted an AlN layer between the buffer and window layer. A crack-free sample was obtained and the solar-blind photodetector fabricated on this structure showed record performance.  相似文献   

16.
17.
A combined magnetic resonance and near-infrared (MRI-NIR) imaging modality can potentially yield high resolution maps of optical properties from noninvasive simultaneous measurement. The main disadvantage of near-infrared (NIR) tomography lies in the low spatial resolution resulting from the highly scattering nature of tissue for these wavelengths. MRI has achieved high resolution, but suffers from low specificity. In this study, NIR image reconstruction algorithms that incorporate a priori structural information provided by MRI are investigated in an attempt to optimize recovery of a simulated optical property distribution. The effect of high levels of tissue heterogeneity are evaluated to determine the limitations of incorporating prior information into a realistic set of patient breast images. We assume absorption coefficient (/spl mu//sub a/) variations near /spl plusmn/40%, and transport scattering coefficient (/spl mu//sub s//sup //) variations near /spl plusmn/20%, in a coronal breast MRI geometry. Changes in tissue pathology due to tumor growth can be observed with NIR tompgraphy, and so the goal here is to determine how best to quantify these tumor-based contrast regions within the presence of high tissue heterogeneity. By applying knowledge of tissue's layered structure in reconstruction through various constraints in the iterative algorithm, quantitative recovery of the tumor optical properties improves from 69% to 74%, and localization improves as well. However, only when the true heterogeneity of the tissue distribution was included was accurate quantification of the tumor region possible. Using a good initial guess of /spl mu//sub a/ and /spl mu//sub s//sup //, derived from the regional structure of the model, quantification of the region reaches 99% of the true value, and spatial resolution retains a similar value to the original MRI image.  相似文献   

18.
This paper discusses ozone synthesis by employing a short duration (/spl sim/120 ns) of pulsed power and using positive voltages in dry air and in oxygen, with and without a dielectric barrier. Ozone concentration and ozone production yield (efficiency) are measured at various peak pulsed voltages, pulse repetition rates, varying input energy densities, and different gaseous gap spacings.  相似文献   

19.
Novel II-VI compound materials such as MgZnCdSe, BeZnCdSe, BeZnTe, and related superlattices grown on InP substrates have been investigated for yellow-green emitters employing molecular beam epitaxy. MgZnCdSe was grown in the Mg composition range of 0/spl sim/0.6 to clarify the compositional dependency of the bandgap and refractive index. MgSe-ZnCdSe and MgSe-ZnSeTe short-period superlattices were investigated; the superlattices behaved as quasi-quaternaries (QQs), so that their bandgap energies were controlled by the layer thickness combination of superlattices. For realizing strong lattice hardness, Be-contained H-VI compounds, such as BeZnCdSe and BeZnTe bulk crystals, and MgSe-BeZnCdSe, ZnCdSe-BeZnTe, and MgSe-BeZnTe short-period superlattices were investigated. The superlattices also behaved with QQ properties, by use of which multilayered heterostructures could be grown without growth interruption. Applying the superlattices, visible LEDs were fabricated emitting at the wavelengths from 554 (yellow-green) to 644 nm (red) at room temperature. For yellow (575 nm) LEDs, a long lifetime more than 3500 h was demonstrated even for defect densities as high as 10/sup 5/ cm/sup -2/. The BeZnTe buffers were effective in suppressing the defect density to less than 7 /spl times/ 10/sup 3/ cm/sup -3/. Finally, MgZnCdSe-based II-VI LDs were successfully operated with yellow-green lasing emissions around 560 nm at 77 K.  相似文献   

20.
We conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 /spl mu/m. The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-/spl mu/m-wide stripe lasers having a cavity length of 800 /spl mu/m, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34/spl deg/, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW//spl mu/m) demonstrates reliable performance. For 4-/spl mu/m-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW//spl mu/m are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号