首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用电子背散射技术(EBSD)定量研究AZ31镁合金在225~400°C往复挤压大变形过程中的晶粒细化。结果表明:在225°C往复挤压3道次即获得了超细晶AZ31镁合金。随着变形温度的降低,变形组织的平均位相差和大角度晶界的比例逐渐增加。在3道次的AZ31组织中,只发现少量的{1 012}孪晶,位错滑移是主要的变形机制。施密特因子计算表明,在225~350°C变形时,锥面滑移系{1011}1 120被大量激活。而在400°C变形时,基面滑移系{0001}1 120被大量激活。亚晶界的详细分析为连续动态再结晶在镁合金大变形过程中晶粒细化的重要作用提供了直接的证据。  相似文献   

2.
The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression (CEC) up to 8 passes at 503 K were investigated. The local crystallographic texture, grain size and distribution, and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction (EBSD). The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number. The fraction of low angle grain boundaries (LAGBs) decreases after CEC deformation, and a high fraction of high angle grain boundaries (HAGBs) is revealed after 8 passes of CEC. Moreover, the initial fiber texture becomes random during CEC processing and develops a new texture.  相似文献   

3.
The energy absorption capacity of the Al5083 thin-walled tube produced by parallel tubular angular pressing (PTCAP) process was evaluated. Also, microstructure, mechanical properties, and anisotropy coefficients were studied in the peripheral and axial directions. Results showed that values of energy absorption decreased with processing pass increasing and the values for the unprocessed, first and second passes were obtained to be 167, 161.4 and 160.7 J, respectively. The differences between the simulation results for the energy absorption values and their experimental values for the unprocessed, the first and the second PTCAP passes samples are about 5%, 10%, and 13%, respectively. The energy absorption capacity was related to the anisotropy coefficient and microstructure. The results demonstrated that grain refinement occurred and ultimate tensile strength (UTS) and microhardness after the first and second PTCAP passes were enhanced, while the increase rate in the first pass was much severer. Also, by applying PTCAP, the deformation modes were altered, such that the deformation mode of the annealed tube was quite symmetrical and circular while for the first and second passes there have been triple and double lobes diamond. The results of the numerical simulation for the deformation mode of the annealed and PTCAPed tubes were consistent with the experimental results. The deformation mode of tubes is dependent on their mechanical properties and variation of the mechanical properties during PTCAP process.  相似文献   

4.
MgLiAl alloy containing 9 wt% Li and 1.5% Al composed of hexagonal α and bcc β phases was cast under protecting atmosphere and hot extruded. Various methods of severe plastic deformation were applied to study their effect on structure and grain refinement. Rods were subjected to 1–3 passes of Twist Channel Angular Pressing TCAP (with helical component), cyclic compression to total strain ε?=?5 using MAXStrain Gleeble equipment, both performed at temperature interval 160–200 °C and, as third SPD method, KOBO type extrusion at RT. The TCAP pass resulted in grain refinement of α phase from 30 μm down to about 2 μm and that of β phase from 12 to 5 μm. Maxstrain cycling 10?× up to ε?=?5 led to much finer grain size of 300 nm. KOBO method performed at RT caused average grain size refinement of α and β phases down to about 1 μm. Hardness of alloy decreased slightly with increasing number of TCAP passes due to increase of small void density. It was higher after MAXStrain cycling and after KOBO extrusion. TEM studies after TCAP passes showed higher dislocation density in the β region than in the α phase. Crystallographic relationship (001) α|| (110) β indicated parallel positioning of slip planes of both phases. Electron diffraction technique confirmed increase of grain misorientation with number of TCAP passes. Stress/strain curves recorded at temperature 200 °C showed superplastic forming after 1st and 3rd TCAP passes with better superplastic properties due to higher elongation with increasing number of passes. Values of strain rate sensitivity coefficient m were calculated at 0.29 after 3rd TCAP pass for strain rate range 10?5 to 5?×?10?3 s?1. Deformation by MAXStrain cycling caused much more effective grain refinement with fine microtwins in α phase. Superplastic deformation was also observed in alloy deformed by KOBO method, however the value of m?=?0.21 was obtained at lower temperature of deformation equal to 160 °C and deformation rate in the range 10?5 to 5?×?10?3. Tensile samples deformed superplastically showed grain growth and void formation caused by grain boundary slip. Summarizing, all methods applied resulted in sufficient grain refinement to obtain the effect of superplastic deformation for alloys of two phase α?+?β structure.  相似文献   

5.
白云  唐明 《锻压技术》2020,(3):174-178,184
对含有不同显微组织形态的Al-6.5Zn-1.55Mg-0.25Cr-0.1Zr铝合金开展耐应力腐蚀表征,利用EBSD和TEM处理方法深入探讨了试样发生应力腐蚀开裂的特性。研究结果表明:晶粒形成了许多小角度晶界,大角度晶界基本都是由纤维状晶界构成。以挤压工艺制备的Al-Zn铝合金可以对再结晶过程起到抑制作用,由此减小大角度晶界的比例。有大量亚稳态球形Mg-Zn2颗粒分布于等轴晶组织以及纤维组织晶粒中,还有大量纤维组织出现在亚晶结构中;在纤维组织中还可以观察到一些非常细小的亚晶界析出相,颗粒尺寸只有12 nm。原始组织会减小应力耐腐性,在不同时间的裂纹扩展方向也存在较大差异,在临界深度处变成横向排布的裂纹。大角度晶界成为应力腐蚀裂纹的高效扩展通道,当形成小角度亚晶界后则能够对裂纹扩展发挥抑制作用。  相似文献   

6.
Aluminum of commercial purity was processed by equal-channel angular pressing (ECAP) through two, four and eight passes at room temperature. A series of [1 1 4] convergent-beam electron diffraction (CBED) zone axis patterns were obtained using an electron probe with a diameter of 20 nm. Observations were recorded both immediately adjacent to the grain boundaries and in the grain interiors. Symmetry breaking of the higher-order Laue zone (HOLZ) lines was observed adjacent to the boundaries after two and four passes but not in the grain interiors. Pattern simulation of the CBED patterns taken from the two- and four-pass samples adjacent to the boundaries revealed a homogeneous strain with compressive and shear components. The presence of these homogeneous strains demonstrates that the internal stresses associated with the deformation of aluminum at room temperature are localized in the close vicinity, to within ∼20 nm, of the grain boundaries.  相似文献   

7.
《Acta Materialia》2001,49(1):21-29
The microstructural changes of an aged Al–1.7 at% Cu alloy associated with severe plastic deformation have been studied by transmission electron microscopy (TEM) and energy-filtered transmission electron microscopy (EF-TEM). θ′ precipitates are almost completely dissolved after eight passes of equal-channel angular (ECA) pressing, and nearly single-phase α with a fine grain size of approximately 500 nm is obtained. When a severely deformed sample is aged for 24 h at 100°C, precipitation of equiaxed θ phase is observed along the grain boundaries, whereas only GP zones are formed in the undeformed sample. The dissolution and precipitation processes in severely deformed Al–1.7 at% Cu alloy have been examined by TEM and energy-filter mapping.  相似文献   

8.
In the present work the properties of titanium grade 2 after ECAP processing with original route and regimes (route C, channel angle \(\varPhi\)?=?120°, deformation temperature 300 °C, number of passes up to 8) were examined. Texture development and microstructure parameters after ECAP processing and after recrystallization were determined using electron back scatter diffraction and analysed. A significant increase of the mechanical strength accompanied by some increase of ductility was observed in the deformed samples. The kernel average misorientation and average grain orientation spread were strongly increased after deformation, which confirms the material refinement and fragmentation. The proportion of low angle boundaries increased after four ECAP passes, but after four consecutive passes high angle grain boundaries became predominant. No deformation twins were observed after four and eight ECAP passes. The material recrystallized after deformation retained a fine grain microstructure. The textures of deformed and recrystallized samples were determined. It was found that texture after 8 passes is more homogeneous that that after 4 passes, which partly explains higher ductility of this first sample.  相似文献   

9.
Nb tubes were fabricated through hydrostatic extrusion at extrusion ratios of 3.1 and 6.1 at ambient temperature, and then their microstructure, texture, and Vickers hardness were investigated based on electron back-scattered diffraction (EBSD) data. The fraction of low-angle boundaries (LABs) largely decreased with a sharp decrease in mean grain sizes after hydrostatic extrusion and was not proportional to extrusion ratios, assuming that mixed-asymmetrical junctions forming LABs dissociate at high extrusion ratios from the external stress (>981 MPa) with thermal activation by the generated heat. The correlation between grain size and Vickers hardness followed the Hall?Petch relationship despite the texture gradient of the 〈111〉 cyclic fiber textural microstructure at low extrusion ratios and the 〈100〉 true fiber textural microstructure at high extrusion ratios. The increase in hydrostatic pressure on the Nb tubes contributed to texture evolution in terms of extrusion ratios due to the difference between {110}〈111〉 and {112}〈111〉 components based on EBSD data.  相似文献   

10.
ECAP工艺对TiAl_3-P/Al复合材料组织的影响   总被引:1,自引:0,他引:1  
利用透射电子显微镜和光学显微镜研究了窀温下1~8道次等通道角挤压(ECAP)3工艺对TiAl3-P/Al复合材料组织的影响。结果表明,在ECAP挤压初期Al基体中的位错密度很高,在2道次后急剧降低;组织中位错墙比例在开始也呈现升高的趋势,随着应变量的增加,逐渐向小角度晶界转变;小角度晶界的出现比位错墙晚,晶内小角度晶界的比例变化趋势也是一个先增加后降低的过程,最终转变为大角晶界。ECAP过程中,TiAl3颗粒对Al基体组织变化的作用不明显。ECAP变形有效破碎了较大尺寸的TiAl3颗粒并改善了TiAl3颗粒在Al基体中分布的均匀度。板条状TiAl3在ECAP变形中不仅发生了脆性断裂,还发生了孪生变形,与基体金属的变形相互协调,使少量大尺寸TiAl3颗粒保留下来。  相似文献   

11.
We have systematically investigated the microstructural evolution of niobium (Nb) subjected to severe plastic deformation via equal channel angular extrusion (ECAE) up to 24 passes. The starting Nb billet material consists of a centimeter-scale grain size with a columnar structure. We have found that the grain size reduction of the Nb is almost saturated at ∼300 nm after eight passes of ECAE. However, the population of high-angle grain boundaries continues to increase with further ECAE, and no saturation appears to have been reached at 24 passes. We have evaluated the mechanical properties of the samples with different number of ECAE passes over a wide range of strain rates, from quasi-static to high strain rates. We have used strain-rate jump tests to examine the strain-rate sensitivity (SRS) of the processed samples and found that the SRS of the ECAE-processed Nb is ∼0.012, which is a factor of three smaller than that of the coarse-grained counterpart. The activation volume derived for plastic deformation indicates that the double-kink formation of screw dislocations is still the predominant deformation mechanism in the ECAE-processed Nb. Quasi-static true stress-strain curves exhibit elastic-nearly perfectly plastic behavior. The quasi-static yield strength is also nearly saturated after eight passes of ECAE. High-strain-rate compressive true stress-strain curves show uniform flow softening. However, the dynamic peak stress keeps rising with an increased number of ECAE passes, suggesting a strong grain boundary contribution to dynamic strengthening. Scanning electron microscopy of post-loaded surfaces displays a morphology of diffuse shear bands accompanying highly compressed grains. In our report, we demonstrate that grain boundaries of severely deformed metals play different roles at low, quasi-static vs. high-strain rates of mechanical loading. The difference is primarily determined by the strength of grain boundaries acting as dislocation barriers at different loading rates. This discovery is significant for the understanding of the effect of the microstructure as a function of the applied loading rate.  相似文献   

12.
Two kinds of 90Cu10 Ni tubes with different service lives(more than 3 years and only 1 year,respectively)under identical working conditions were studied by an immersion test in a 3.5 wt% NaCl solution and the electron backscattered diffraction(EBSD) technique.The morphology after immersion showed severer corrosion attack at the grain boundaries of the tube with shorter service life compared with the tube with longer service life.The grain boundary characterization distributions(GBCDs) of the two tubes obtained by EBSD revealed more Σ3 boundaries and twins,and larger random boundary meshes in the tube with longer service life.A short immersion test in a modified Livingston's solution was conducted to evaluate the tendency to corrosion attack of different types of the grain boundaries.SEM and AFM were used to characterize the corrosion morphologies of the boundaries.A strong correlation between varying depths of corrosion grooves and types of the grain boundaries was obtained.The influence of deviation angle of low Σ boundaries on corrosion resistance of the grain boundaries was also discussed.It is concluded that a special ‘‘grain boundary engineering'(GBE) treatment has been performed on the tube with longer service life.It is proposed that the optimized GBCD is responsible for the better service performance of the tube.  相似文献   

13.
Copper sheet with grain size of 30-60μm was processed by plastic deformation of asymmetrical accumulative rolling-bonding(AARB)with the strain of 3.2.The effects of annealing temperature and time on microstructural evolution were studied by means of electron backscattered diffraction(EBSD).EBSD grain mapping,recrystallization pole figure and grain boundary misorientation angle distribution graph were constructed,and the characteristics were assessed by microstructure,grain size,grain boundary misorientation and texture.The results show that ultra fine grains(UFG)are obtained after annealing at 250℃ for 30?40 min.When the annealing is controlled at 250℃for 40 min,the recrystallization is finished,a large number of small grains appear and most grain boundaries consist of low-angle boundaries.The character of texture is rolling texture after the recrystallization treatment,but the strength of the texture is faint.While second recrystallization happens,{110}1ī2+{112}11ī texture component disappears and turns into{122}212cube twin texture component.  相似文献   

14.
室温下,对923 及1023 K退火1 h所得的不同原始晶粒尺寸的工业纯钛进行ECAP变形。通过TEM、EBSD、室温拉伸和显微硬度测试研究原始晶粒尺寸对ECAP变形纯钛组织性能的影响。探讨纯钛ECAP变形孪生行为和变形机制。结果表明,退火温度越高,原始晶粒尺寸越大。1道次变形后,1023 K退火纯钛的晶粒细化效果更显著。4道次变形后,923 K退火纯钛的组织更细小均匀。随着变形道次的增加,屈服强度不断增大,1道次变形后增幅最大,约为100%,且原始晶粒尺寸越大,强度增幅越大。纯钛ECAP变形机制包括位错滑移和孪生,原始晶粒尺寸越大,孪晶数量越多。  相似文献   

15.
An Al-Mg-Mn alloy was subjected to equal channel angular pressing(ECAP) at 350 ℃ for 6 passes. Static annealing was conducted on the deformed alloy at various temperatures from 400 to 450 ℃ for 1h respectively. The microstructural evolutions of both the deformed and the annealed materials were studied by electron back scattering diffraction pattern(EBSD) analysis. A fine-grained structure with (sub)grain size of about 2 μm is obtained after 6 ECAP passes, and the fraction of high-angle boundaries is 48.08%. As the annealing temperature increases, the average misorientations of the grain boundaries and the fraction of high-angle boundaries increases gradually. No grain growth takes place in the 400 ℃ annealed sample, while after annealing at 450 ℃ a coarse-grained structure replaces the initial fine-grained structure produced by ECAP. The aspect ratios remain almost constant and the (sub)grains keep equiaxed in the range of the present experiment. As the annealing temperature increases, the strength decreases obviously, which attributes to the relaxation of the internal stresses and the grain growth, while the elongation increases slightly.  相似文献   

16.
The Al–Mg alloy with high Mg addition (Al–9.2Mg–0.8Mn–0.2Zr-0.15Ti, in wt.%) was subjected to different passes (1, 2 and 4) of high strain rate rolling (HSRR), with the total thickness reduction of 72%, the rolling temperature of 400 °C and strain rate of 8.6 s−1. The microstructure evolution was studied by optical microscope (OM), scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). The alloy that undergoes 2 passes of HSRR exhibits an obvious bimodal grain structure, in which the average grain sizes of the fine dynamic recrystallization (DRX) grains and the coarse non-DRX regions are 6.4 and 47.7 μm, respectively. The high strength ((507±9) MPa) and the large ductility ((24.9±1.3)%) are obtained in the alloy containing the bimodal grain distribution. The discontinuous dynamic recrystallization (DDRX) mechanism is the prominent grain refinement mechanism in the alloy subjected to 2 passes of HSRR.  相似文献   

17.
采用透射电子显微镜(TEM)、电子背散射衍射(EBSD)和Instron试验机对试验温度400 ℃下高压扭转变形加工的Al-Zn-Mg-Cu-Zr合金进行组织和力学性能的表征与测试。结果表明,变形试样的晶界和晶粒中的第二相明显被破碎和细化,晶界无沉淀析出带宽度变窄,大大提高了变形试样的强度和塑性。初始样品的晶粒取向是随机分布的。当应变较小时,试样的晶粒尺寸、晶粒取向和局部取向差异均呈现非均匀的片层状分布。由于非均匀层状组织在变形过程中产生的背应力强化效应,0.5圈变形试样的力学性能最好。  相似文献   

18.
表面纳米化处理是一种有效改善耐腐蚀性能的手段,但受表面粗糙度和残余应力等因素的影响,其相关机制并不清晰。 运用透射电镜(TEM)和扫描电镜(SEM)研究经超声表面滚压工艺(USRP)处理后 7075 铝合金的组织和性能。结果表明: 经 1 道次和 15 道次 USRP 处理后,7075 铝合金表面粗糙度减小并且引入了残余压应力。滚压 15 个道次的试样表面能获得平均晶粒尺寸为 52 nm 的纳米晶。相较于未处理试样,经 1 道次和 15 道次 USRP 处理后试样的耐腐蚀性能均显著提高。其中, 滚压 15 个道次试样的耐腐蚀性能提升更为显著。这主要是因为纳米晶可以使材料表面形成更加致密的钝化膜,导致其耐腐蚀性能显著提高,而表面粗糙度降低和引入残余压应力是提升耐腐蚀性能的次要因素。对比分析残余应力、表面粗糙度和表面纳米晶对 7075 铝合金耐腐蚀性能的影响,揭示了 7075 铝合金经表面纳米化处理后耐腐蚀性能提升的机制。  相似文献   

19.
通过慢应变速率拉伸、动电位极化曲线测试、透射电子显微分析(TEM)、背散射电子衍射(EBSD)等实验较系统地研究了微量Zn对Al-4.2Cu-1.4Mg合金应力腐蚀与微观组织的影响规律。结果表明,微量Zn的添加显著影响合金的腐蚀性能,且随着Zn含量增加,合金的抗应力腐蚀敏感性以及其对应的开路电位均呈峰值变化,含Zn量0.29%合金的抗腐蚀能力最佳。EBSD研究表明,含0.29%Zn的Al-4.2Cu-1.4Mg合金与其它合金相比存在较多的低能量小角度晶界,这可能是微量Zn显著影响该合金抗应力腐蚀性能的主要原因。  相似文献   

20.
采用超声波金属焊接技术对2A12-T3和2A11-O铝合金进行了焊接,然后对焊层进行了超声深滚处理。通过扫描电镜、电子背散射衍射和透射电镜分析了超声深滚处理前后超声波焊层的宏观形貌和微观组织。扫描电镜和透射电镜分析表明,超声深滚处理能够有效去除超声波焊层表面的焊接压痕,降低表面粗糙度,使焊接界面的组织更加均匀。电子背散射衍射分析表明,超声深滚处理后焊层组织发生再结晶,形成再结晶织构和形变诱导晶粒长大,有助于消除焊接界面的焊接残余应力。因此,超声深滚处理有助于改善铝合金超声波焊层的组织和性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号