首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of 0.15–0.5 mol% acceptor oxide, Al2O3, to 3 mol% Y2O3-ZrO2 results in enhanced densification at 1350 °C. The enhancement is accounted for by a liquid phase sintering mechanism. The addition of donor oxide, Ta2O5, of 0.15–2.5 mol % at 1300–1600 °C results in the destabilization of tetragonal (t-) phase and the decrease of final density in 3 mol% Y2O3-TZP (tetragonal ZrO2 polycrystals). X-ray diffractometry (XRD) reveals that the Ta2O5-added 3 mol% Y2O3-ZrO2 contains monoclinic (m-) ZrO2 and a second phase of Ta2Zr6O17. The decreasing in final density is attributed to the increase of m-ZrO2 content. Complete destabilization of t-ZrO2 to m-ZrO2 in samples added with 2.5 mol% Ta2O5 is interpreted by the compensation effect based on donor- and acceptor-codoping defect chemistry.  相似文献   

2.
Addition of 0.15–0.5 mol% acceptor oxide, Al2O3, to 3 mol% Y2O3-ZrO2 results in enhanced densification at 1350°C. The enhancement is accounted for by a liquid phase sintering mechanism. While the addition of donor oxide, Ta2O5, of 0.15–2.5 mol% at 1300–1600°C results in the decrease of final density and in the destabilization of the tetragonal (t) phase of the 3 mol% Y2O3-t-ZrO2 (TZP). X-ray diffractometry (XRD) reveals that the Ta2O5-added 3 mol% Y2O3-ZrO2 contains monoclinic (m) ZrO2 phase and a second Ta2Zr6O17 phase. The decrease is attributed to the increase of m-ZrO2 content in these samples. Complete phase transformation from t-ZrO2 to m-ZrO2 observed in samples added with 2.5 mol% Ta2O5 is interpreted by the compensation effect based on donor and acceptor codoping defect chemistry.  相似文献   

3.
The phases, transformability, microstructure and mechanical properties of ZrO2-Gd2O3 polycrystals containing 1.75–8 mol% Gd2O3 were studied. The samples were prepared by a coprecipitation route followed by sintering at 1400°C for 2 hours. The grain size was in the range of 0.1–0.2 m except for some large grains at high Gd2O3 contents. Only a tetragonal phase was observed between 2–4 mol% Gd2O3 and a cubic phase for compositions containing 9.6 mol% Gd2O3. A peak K IC of 12 MPa m1/2 and a strength of 800 MPa were obtained in the 2 mol% Gd2O3 alloy for which the t m transformation on the fracture surface was also found to be maximum. Transformation toughening is able to account for most of the toughness of the samples.  相似文献   

4.
In compositions having ZrO2/Y2O3=(74.25–71.25)/(0.75–3.75) (mol% ratio) with 25 mol% Al2O3, metastable t-ZrO2 solid solutions crystallize at 780° to 860°C from amorphous materials prepared by the simultaneous hydrolysis of zirconium, yttrium and aluminium acetylacetonates. Hot isostatic pressing has been performed for 1 h at 1130 and 1230°C under 196 MPa using their powders. Two kinds of material are fabricated: (i) perfect ZrO2 solid-solution ceramics and (ii) composites of ZrO2 solid solution and -Al2O3. Their mechanical properties are examined, in connection with microstructures and t/m ZrO2 ratios. Composites with a homogeneous dispersed -Al2O3 derived from solid-solution ceramics result in a remarkable increase of strength.  相似文献   

5.
Si3N4-ZrO2 composites have been prepared by hot isostatic pressing at 1550 and 1750 °C, using both unstabilized ZrO2 and ZrO2 stabilized with 3 mol% Y2O3. The composites were formed with a zirconia addition of 0, 5, 10, 15 and 20 wt%, with respect to the silicon nitride, together with 0–4 wt% Al2O3 and 0–6 wt% Y2O3. Composites prepared at 1550 °C contained substantial amounts of unreacted -Si3N4, and full density was achieved only when 1 wt% Al2O3 or 4 wt % Y2O3 had been added. These materials were generally harder and more brittle than those densified at the higher temperature. When the ZrO2 starting powder was stabilized by Y2O3, fully dense Si3N4-ZrO2 composites could be prepared at 1750 °C even without other oxide additives. Densification at 1750 °C resulted in the highest fracture toughness values. Several groups of materials densified at 1750 °C showed a good combination of Vickers hardness (HV10) and indentation fracture toughness; around 1450 kg mm–2 and 4.5 MPam1/2, respectively. Examples of such materials were either Si3N4 formed with an addition of 2–6 wt% Y2O3 or Si3N4-ZrO2 composites with a simultaneous addition of 2–6 wt%Y2O3 and 2–4 wt% Al2O3.  相似文献   

6.
Examination of compositions in the system Si3N4-Y2O3-SiO2 using sintered samples revealed the existence of two regions of melting and three silicon yttrium oxynitride phases. The regions of melting occur at 1600° C at high SiO2 concentrations (13 mol% Si3N4 + 19 mol% Y2O3 + 68 mol% SiO2) and at 1650° C at high Y2O3 concentrations (25 mol % Si3N4 + 75 mol % Y2O3). Two ternary phases 4Y2O3 ·SiO2 ·Si3N4 and 10Y2O3 ·9SiO2 ·Si3N4 and one binary phase Si3N4 ·Y2O3 were observed. The 4Y2O3 ·SiO2 ·Si3N4 phase has a monoclinic structure (a= 11.038 Å, b=10.076 Å, c=7.552 Å, =108° 40) and appears to be isostructural with silicates of the wohlerite cuspidine series. The 10Y2O3 ·9SiO2 ·Si3N4 phase has a hexagonal unit cell (a=7.598 Å c=4.908 Å). Features of the Si3N4-Y2O3-SiO2 systems are discussed in terms of the role of Y2O3 in the hot-pressing of Si3N4, and it is suggested that Y2O3 promotes a liquid-phase sintering process which incorporates dissolution and precipitation of Si3N4 at the solid-liquid interface.Visiting Research Associate at Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, under Contract No. F33615-73-C-4155 when this work was carried out.  相似文献   

7.
The thermal expansion of superconducting Bi1.6Pb0.4Sr2Ca2Cu3Ox (BiPbSrCaCuO) and its oxide components Bi2O3, PbO, CaO and CuO have been studied by high-temperature dilatometric measurements (30–800°C). The thermal expansion coefficient for the BiPbSrCaCuO superconductor in the range 150–830°C is =6.4×10–6K–1. The temperature dependences of L/L of pressed Bi2O3 reveals sharp changes of length on heating (T 1=712°C), and on cooling (T 2=637°C and T 3=577°C), caused by the phase transition monoclinic-cubic (T 1) and by reverse transitions via a metastable phase (T 2 and T 3). By thermal expansion measurements of melted Bi2O3 it is shown that hysteresis in the forward and the reverse phase transitions may be partly caused by grain boundary effect in pressed Bi2O3. The thermal expansion of red PbO reveals a sharp decrease in L/L, on heating (T 1=490°C), related with the phase transition of tetragonal (red, a=0.3962 nm, c=0.5025 nm)-orthorhombic (yellow, a=0.5489 nm, b=0.4756 nm, c=0.5895 nm). The possible causes of irreversibility of the phase transition in PbO are discussed. In the range 50–740°C the coefficient of thermal expansion of pressed Bi2O3 (m=3.6 × 10–6 and c=16.6×10–6K–1 for monoclinic and cubic Bi2O3 respectively), the melted Bi2O3 (m=7.6×10–6 and c=11.5×10–6K–1), PbO (t=9.4×106 and or=3.3×10–6K–1 for tetragonal and orthorhombic PbO respectively), CaO (=6.1×10–6K–1) and CuO (=4.3×10–6K–1) are presented.  相似文献   

8.
Yttria stabilized zirconia-alumina (YSTZ-Al2O3) nanocomposite system with various Al2O3 concentrations has been synthesized by sol-gel route. The experimental techniques XRD, DTA, TGA, FT-Raman, FT-IR, SEM, Vickers hardness measurements, density measurements and Impedance spectroscopy were used to characterize the synthesized specimens. DTA result shows two exothermic reactions: one around 760°C and another around 960°C. XRD results confirm that the specimen starts to crystallize on heating above 750°C. Well resolved XRD reflections corresponding to tetragonal (t) ZrO2 were obtained after the specimens were heated at 1000°C. FT-Raman results confirmed that the crystallites developed above 750°C was t-ZrO2. It was observed from the XRD and DTA results that the bulk and grain boundary region crystallize independently in two different temperatures with a difference in temperature of about 200°C. The crystallization temperatures increase with Al2O3 contents. At 1300°C, the pure YSTZ and 5 and 10 wt % Al2O3 added YSTZ specimens underwent structural transformation from tetragonal to monoclinic ZrO2. But, the tetragonal symmetry remains stable at 1300°C with an addition of 15 wt % Al2O3. The system which retain its tetragonal symmetry at its processing temperature (1300°C) gives high hardness and maximum density values. Almost 100% theoretical density value was obtained at 1300°C with an addition of 15 wt % of Al2O3.  相似文献   

9.
In the system of ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminium alkoxides. At higher temperatures, they transform into tetragonal solid solutions. Metastable ZrO2 solid solution powders containing 25 mol% Al2O3 have been sintered at 1000–1150 °C under 196 M Pausing the hot isostatic pressing technique. The solid solution ceramics consisting of homogeneous microstructure with an average grain size of 50 nm exhibited a very high fracture toughness of 23 MN m –1.5. They have been characterized by X-ray diffraction and electron probe surface analyses.  相似文献   

10.
Electrical conductivity measurements have been made as a function of dopant concentration (4 to 8 mol% Sc2O3) in the scandia-zirconia system, All the compositions studied had a tetragonal structure. The hombohedral phase was present only in samples prepared from mechanical mixtures of Sc2O3 and ZrO2. In specimens prepared by coprecipitation, no phase lines were observed and the monoclinic zirconia (m-ZrO2) phase was present for only Sc2O3 contents 5 mol %. The conductivity of Sc2O3-ZrO2 decreased continuously with time up to 300 h anneal time between 700 and 1000° C. X-ray diffraction of coprecipated specimens of 7.8 mol % Sc2O3-ZrO2 composition annealed at 1000° C (28 days), 750° C (42 days) or 460° C (189 days) did not reveal any changes to account for this. However, transmission electron microscopy showed that changes associated with the formation of very fine precipitates had occurred. The activation energy for conduction in the low-temperature region decreased monotonically with decrease in the scandia content. Jumps in the conductivity curves and hysterisis effects were observed in specimens containing m-ZrO2.  相似文献   

11.
TZP ceramic of 99.7% theoretical relative final density was obtained by pressureless sintering a commercial co-precipitated 3 mol % Y2O3-ZrO2 powder at 1400° C for 10 h. Fracture surfaces of the aged material revealed that the fracture of TZP ceramic was typified by an intergranular mode in areas where the phase was mainly tetragonal, whereas the transgranular mode was found predominantly in the area containing more monoclinic phase. Microcracks induced by the (t) (m) transformation provided short paths for water to accelerate the property degradation of TZP upon low-temperature ageing in a humid atmosphere.  相似文献   

12.
Y2O3 rods 100 to 200 nm in diameter and 10 to 20 m in length are accessible via polyol-mediated synthesis of a precursor material with similar shape. By heating of Y(CH3COO)3 · xH2O and a defined amount of water at 190°C in diethylene glycol, the rod-like precursor material is formed. Infrared spectroscopy (IR), differential thermal analysis (DTA) and thermal gravimetry (TG) evidence that this precursor material still contains acetate. However, the precursor material can be transformed to Y2O3 by sintering at 600°C without destruction of the rod-like shape. According to X-ray powder diffraction analysis, the rods are well crystallized. They can be assumed to be with [100] orientation. By doping with Eu3+ (5 mol%), red emitting phosphor rods can be realized. With optical spectroscopy the typical line emission of Eu3+ is observed. Diffuse reflectance of Y2O3:Eu3+ rods is determined to be higher than 95% in the visible. While exciting at 254 nm (Hg-discharge), a quantum efficiency of 38.5% is proven for the prepared Y2O3:Eu3+ rods.  相似文献   

13.
The phase relations in the Y2O3–WO3–CuO system were studied by x-ray diffraction and thermal analysis. The results were used to construct the 800°C section of the phase diagram. Based on the new and earlier data on the liquidus relations, the section through the Y2O3–WO3–CuO phase diagram along the Y2O3–CuWO4join was mapped out.  相似文献   

14.
Chemical and structural properties of the mixed metal oxides (1–x)Fe2O3+xCr2O3 were studied by different techniques. X-ray powder diffraction showed the existence of solid solutions, (Fe1–x Cr x )2O3, over the whole concentration region, 0x1. The gradual replacement of Fe3+ with Cr3+ ions in samples prepared at 900°C caused changes in unit-cell parameters; most of these changes took place in the region fromx0.3–0.9. The samples having the fraction of Cr2O3 in the region from 0.7–0.8, contained two closely related phases, with slightly different compositions. After an additional heat treatment at 1100°C, these samples contained only one phase.57Fe Mössbauer spectroscopy showed a gradual decrease of hyperfine magnetic field with increasing Cr2O3 content. The sample having the fraction of Cr2O3 of 0.7, and prepared at 900°C, exhibited two separated sextets at room temperature, in comparison with other compositions showing one sextet. It was shown that Fourier transform infrared (FT-IR) spectroscopy is a powerful method for the investigation of structural changes in these solid solutions. The increase in the Cr2O3 content resulted in shifts of the corresponding infrared bands. In addition, a gradual transition of the spectrum typical for -Fe2O3 to the spectrum typical for Cr2O3 was shown. The transition effects observed in the FT-IR spectra were correlated with the X-ray powder diffraction and57Fe Mössbauer spectroscopic results.  相似文献   

15.
The microstructure, electrical properties, and degradation behavior of Pr-based zinc oxide varistors, which are composed of Zn-Pr-Co-Cr-Y oxides were investigated according to Y2O3 additive content in the range 0.5–4.0 mol%. The majority of the Sadded Y2O3 were segregated at the multiple ZnO grain junctions and grain boundaries. The average grain size was markedly decreased in the range 27.3–8.6 m with increasing Y2O3 additive content. Y2O3 acted as an inhibitor of grain growth. Additions of Y2O3 increased the varistor voltage in the range 36.90–686.58 V/mm, increased the nonlinear exponent in the range 3.75–87.42, decreased the leakage current in the range 115.48–0.047A, increased the barrier height in the range 1.06–2.16 eV, and decreased the donor concentration in the rang 1.87 × 1018–0.19 × 1018 cm–3. Y2O3 acted as an acceptor, as a result of the decrease of donor concentration. All Pr-based ZnO varistors doped with Y2O3 exhibited very predominant degradation characteristics, which show a nearly symmetric I-V after the stress. In particular, since 4.0 mol% Y2O3-added ZnO varistor has not only very excellent non-ohmicity, but also very stable degradation behavior, it is estimated to be sufficiently used to various application fields.  相似文献   

16.
The phase relationships over a wide range of temperature and compositions in the ZrO2-CeO2 system have been reinvestigated. From DTA results, thermal expansion measurements andK IC determinations it was established that additions of CeO2 to ZrO2 decreases the monoclinic to tetragonal ZrO2 transition temperature, from 990 ° C to 150 50 ° C, and an invariant eutectoid point at approximately 15 mol% CeO2 exists. The extent of the different single- and two-phase fields were determined with precise lattice parameter measurements on quenched samples. Evidence for the existence of a binary compound Ce2Zr3O10 (ø-phase) was obtained by X-ray diffraction. The ø-phase was stable below approximately 800 ° C, above which it decomposes into tetragonal zirconia + fluorite ceria solid solutions. Taking into account the polymorphic tetragonal-cubic transition and the narrowness of the two-phase tetragonal zirconia + fluorite ceria field above 2000 ° C, the existence of a new invariant eutectoid point was assumed, in which the metastable fluorite zirconia solid solution decomposes into tetragonal zirconia + fluorite ceria solid solutions. From the results obtained, the phase diagram also incorporates a eutectic point located at approximately 2300 ° C and 24 mol % CeO2.  相似文献   

17.
The sintering process of Y2O3- and Al2O3-doped Si3N4 has been investigated by dilatometry and microstructural observations. The densification progressed through three processes. The bulk density increased to 85% theoretical without the formation of -Si3N4 in the initial process. The densification once terminated after the second process. The / transformation of Si3N4 and the related formation of prismatic grains reduced the densification rate in the second process, although the grain size and the aspect ratio were very small. The final process was the densification of -Si3N4, where the fibrous grains grew remarkably. The kinetic order for the densification of -Si3N4 indicated a diffusion-rate controlling mechanism with the activation energy of 244 kJ mol–1 (<1450 ° C) and 193 kJ mol–1 (>1450 ° C). The influence of heating rate on the grain growth was characterized by a parameter derived from kinetic parameters. The relationships between grain growth and densification behaviour have also been discussed.  相似文献   

18.
The phase composition, electrical conductivity, and structural and electrical stability of ZrO2–Sc2O3–Cr2O3 solid electrolytes prepared by solid-state reactions involving three-step firing at 1350, 1850 (vacuum), and 1300°C were studied for compositions along two lines: x(0.91ZrO2 + 0.09Sc2O3)–yCr2O3 (I) andx(0.89ZrO2 + 0.11Sc2O3)–yCr2O3 (II), x + y = 1, y = 0–0.04. The results indicate that the ternary solid solutions withy= 0.01–0.02 retain a cubic structure in a broad temperature range, down to room temperature. This increases the low-temperature (<600°C) conductivity of the solid electrolytes, especially in system II. In both systems, Cr2O3 solubility is about 3 mol %. Stability tests at 900°C for 200 h reduce the conductivity of the solid electrolytes, particularly at the lower Sc2O3 content and in the presence of Cr2O3. The reduction in conductivity is due to the decomposition of the high-temperature tetragonal phase and the formation of a tetragonal phase with a low stabilizer content.  相似文献   

19.
The compositions of two new phases (cubic and tetragonal) in the Y2O3–BaO–WO3–CuO system were determined. The dissolution behavior of these phases was found to correlate with their composition.  相似文献   

20.
ZrO2 polycrystals, partially stabilized by 2 to 7 mol% Y2O3, were arc-melted and rapidly quenched using an arc-imaging furnace with a hammer-anvil unit. Some of the specimens were further annealed at 1700° C for 3 h in air. The phases and the microstructures of these ZrO2-Y2O3 polycrystals were examined through X-ray diffraction and transmission electron microscopy. Special emphasis was placed upon the examination of the microstructure of the metastable tetragonal phase (t phase) which was formed by a diffusionless transformation of the high-temperature cubic phase. It was found that the t phase exhibits a twinned and mosaic structure made of alternating layers of twin-related variants. A comparison of the present experimental results with other related works has also been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号