首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol is formed as a by-product in production of ethanol and baker's yeast during fermentation of Saccharomyces cerevisiae under anaerobic and aerobic growth conditions, respectively. One physiological role of glycerol formation by yeast is to reoxidize NADH, formed in synthesis of biomass and secondary fermentation products, to NAD(+). The objective of this study was to evaluate whether introduction of a new pathway for reoxidation of NADH, in a yeast strain where glycerol synthesis had been impaired, would result in elimination of glycerol production and lead to increased yields of ethanol and biomass under anaerobic and aerobic growth conditions, respectively. This was done by deletion of GPD1 and GPD2, encoding two isoenzymes of glycerol 3-phosphate dehydrogenase, and expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii, encoded by cth. In anaerobic batch fermentations of strain TN5 (gpd2-Delta1), formation of glycerol was significantly impaired, which resulted in reduction of the maximum specific growth rate from 0.41/h in the wild-type to 0.08/h. Deletion of GPD2 also resulted in a reduced biomass yield, but did not affect formation of the remaining products. The modest effect of the GPD1 deletion under anaerobic conditions on the maximum specific growth rate and product yields clearly showed that Gdh2p is the important factor in glycerol formation during anaerobic growth. Strain TN6 (gpd1-Delta1 gpd2-Delta1) was unable to grow under anaerobic conditions due to the inability of the strain to reoxidize NADH to NAD(+) by synthesis of glycerol. Also, strain TN23 (gpd1-Delta1 gpd2-Delta1 YEp24-PGKp-cth-PGKt) was unable to grow anaerobically, leading to the conclusion that the NAD(+) pool became limiting in biomass synthesis before the nucleotide levels favoured a transhydrogenase reaction that could convert NADH and NADP(+) to NADPH and NAD(+). Deletion of either GPD1 or GPD2 in the wild-type resulted in a dramatic reduction of the glycerol yields in the aerobic batch cultivations of strains TN4 (gpd1-Delta1) and TN5 (gpd2-Delta1) without serious effects on the maximum specific growth rates or the biomass yields. Deletion of both GPD1 and GPD2 in strain TN6 (gpd1-Delta1 gpd2-Delta1) resulted in a dramatic reduction in the maximum specific growth rate and in biomass formation. Expression of the cytoplasmic transhydrogenase in the double mutant, resulting in TN23, gave a further decrease in micromax from 0.17/h in strain TN6 to 0.09/h in strain TN23, since the transhydrogenase reaction was in the direction from NADPH and NADP(+) to NADH and NADP(+). Thus, it was not possible to introduce an alternative pathway for reoxidation of NADH in the cytoplasm by expression of the transhydrogenase from A. vinelandii in a S. cerevisiae strain with a double deletion in GPD1 and GPD2.  相似文献   

2.
实验研究了二倍体酿酒酵母(Saccharomyces cerevisiae)菌株GJ2008和GGFS16的孢子形成和分离条件,并获得了相应的单倍体细胞.实验结果表明,酿酒酵母GJ2008和GGFS16在McClary培养基上22℃培养7d,产孢率分别为91.46%和87.20%.在此条件下,以浓度为0.3g/L的蜗牛酶37℃水浴处理,孢子释放率分别为66.15%和67.35%.对获得的单倍体菌株进行发酵实验,并测定其酒精发酵性能,为融合实验做好铺垫.  相似文献   

3.
The ability of a microorganism to adhere to a solid support and to initiate a colony is often the first stage of microbial infections. To date, studies on S. cerevisiae cell-cell and cell-solid support interactions concerned only cell agglutination during mating and flocculation. Colony formation has not been studied before probably because this species is not pathogenic. However, S. cerevisiae can be a convenient model to study this process, thanks to well-developed genetics and the full knowledge of its nucleotide sequence. A preliminary characterization of the recently cloned essential IRR1 gene indicated that it may participate in cell-cell/substrate interactions. Here we show that lowering the level of expression of IRR1 (after fusion with a regulatory catalase A gene promoter) affects colony formation and disturbs zygote formation and spore germination. All these processes involve cell-cell or cell-solid support contacts. The IRR1 protein is localized in the cytosol as verified by immunofluorescence microscopy, and confirmed by cell fractionation and Western blotting. This indicates that Irr1p is not directly involved in the cell-solid support adhesion, but may be an element of a communication pathway between the cell and its surroundings.  相似文献   

4.
A gut2 mutant of Saccharomyces cerevisiae is deficient in the mitochondrial glycerol 3-phosphate dehydrogenase and hence cannot utilize glycerol. Upon transformation of a gut2 mutant strain with a low-copy yeast genomic library, hybrid plasmids were isolated which complemented the gut2 mutation. The nucleotide sequence of a 3·2 kb PstI-XhoI fragment complementing a gut2 mutant strain is presented. The fragment reveals an open reading frame (ORF) encoding a polypeptide with a predicted molecular weight of 68·8 kDa. Disruption of the ORF leads to a glycerol non-utilizing phenotype. A putative flavin-binding domain, located at the amino terminus, was identified by comparison with the amino acid sequences of other flavoproteins. The cloned gene has been mapped both physically and genetically to the left arm of chromosome IX, where the original gut2 mutation also maps. We conclude that the presented ORF is the GUT2 gene and propose that it is the structural gene for the mitochondrial glycerol 3-phosphate dehydrogenase.  相似文献   

5.
C4二元羧酸广泛用于食品、医药和化学等行业,市场潜在需求量巨大。酿酒酵母被认为是发酵生产C4二元羧酸的潜在最适微生物,却产生大量的乙醇,导致了碳流的损失。通过敲除硫胺素合成途径中的调控基因THI2,阻断了硫胺素的合成,使得副产物乙醇产量从5.27±0.23 g/L下降到0.53±0.12 g/L,但影响了葡萄糖消耗和菌体的生长。在此基础上,通过外源添加0.04μmol/L的硫胺素二磷酸,促进了葡萄糖的消耗和菌体生长;进一步通过外源添加1 000μg/L的NAD+,使得葡萄糖的消耗量和菌体的生长分别提高了48.6%和47.2%,而乙醇产量仅增加了0.56 g/L。通过调控辅因子水平(硫胺素和NAD+)可以有效减少副产物乙醇的积累,为解决利用酿酒酵母生产C4二元羧酸中副产物乙醇积累这一普遍性问题提供了一个新的策略。  相似文献   

6.
GABA transport in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Gamma-aminobutyrate (GABA) accumulation in growing cultures of Saccharomyces cerevisiae was shown to occur by means of an active transport system that is inhibited by proton ionophores, azide, fluoride and arsenate ions. Transport occurred maximally at pH 5.0 and exhibited apparent Km values of 12 microM and 0.1 mM. Accumulated GABA did not efflux upon treatment with proton ionophores and exchanged with extracellular material only very slowly. However, release was complete upon treatment with nystatin. These observations raise the possibility that a major portion of intracellular GABA is sequestered in the vacuole. The response of GABA uptake to growth on various nitrogen sources suggested that uptake may be subject to several types of regulation.  相似文献   

7.
2株酵母菌单倍体原生质体形成与再生条件的研究   总被引:2,自引:1,他引:2  
对酒精高产酿酒酵母GGFS16和GJ2008单倍体原生质体的形成与再生条件进行了研究.结果表明,在菌龄8h、o.2%p-巯基乙醇和0.1% EDTA-Na2预处理20min、1.5%的蜗牛酶37℃处理30min以及使用浓度170g/L的蔗糖作为渗透压稳定剂的条件下,GGFS16和GJ2008单倍体原生质体的形成率和再生率均达到最大.形成率分别是98.14%和97.19%,再生率分别是17.29%和15.78%.  相似文献   

8.
In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.  相似文献   

9.
This investigation deals with factors affecting the production of glycerol in Saccharomyces cerevisiae. In particular, the impact of reduced pyruvate-decarboxylase (PDC) and increased NAD-dependent glycerol-3-phosphate dehydrogenase (GPD) levels was studied. The glycerol yield was 4·7 times (a pdc mutant exhibiting 19% of normal PDC activity) and 6·5 times (a strain exhibiting 20-fold increased GPD activity resulting from overexpression of GPD1 gene) that of the wild type. In the strain carrying both enzyme activity alterations, the glycerol yield was 8·1 times higher than that of the wild type. In all cases, the substantial increase in glycerol yield was associated with a reduction in ethanol yield and a higher by-product formation. The rate of glycerol formation in the pdc mutant was, due to a slower rate of glucose catabolism, only twice that of the wild type, and was increased by GPD1 overexpression to three times that of the wild-type level. Overexpression of GPD1 in the wild-type background, however, led to a six- to seven-fold increase in the rate of glycerol formation. The experimental work clearly demonstrates the rate-limiting role of GPD in glycerol formation in S. cerevisiae.  相似文献   

10.
Proliferation of microbodies in Saccharomyces cerevisiae   总被引:27,自引:0,他引:27  
The development of microbodies in the yeast Saccharomyces cerevisiae was studied in response to different conditions of growth. Various strains of S. cerevisiae were investigated, using cells from the exponential growth phase on glucose as an inoculum in all transfer experiments. Electron microscopy, including serial sectioning, revealed that these cells generally contained one to four small microbodies which were localized in the vicinity of the cell wall and characterized by the presence of catalase. Transfer of these glucose-grown cells into media supplemented with various compounds known to induce microbody proliferation in other yeasts--i.e. uric acid, alkylated amines, amino acids, C2-compounds such as ethanol or acetate, in the presence or absence of compounds that induce oxygen radical formation--did not result in a significant change in the number of microbody profiles observed. Marked microbody proliferation was, however, observed after a shift of cells into media containing oleic acid and was associated with the induction of activities of beta-oxidation enzymes. In addition, catalase and isocitrate lyase were present in enhanced levels. Kinetic experiments suggested that these microbodies developed from those originally present in the inoculum cells. In thin sections up to 14 microbody profiles were occasionally observed, often present in small clusters. Their ultimate volume fraction amounted to 8-10% of the cytoplasmic volume.  相似文献   

11.
Selectable markers integrated by the ‘gamma’ deletion method (Sikorski and Hieter, 1989) can be efficiently replaced in vivo with other markers by transformation with homologous plasmids. Transformation frequencies in experiments designed to replace original selectable markers with an alternate marker were high and molecular analysis confirmed that all transformants that exhibited the expected phenotypes (loss of the original prototrophy and gain of the alternate prototrophy) resulted from homologous recombination between plasmid sequences at the target locus. This technique involves no plasmid construction and greatly facilitates the generation of yeast cells containing multiple gene disruptions.  相似文献   

12.
The existence of histone H1 in the yeast, Saccharomyces cerevisiae, has long been debated. In this report we describe the presence of histone H1 in yeast. YPL127c, a gene encoding a protein with a high degree of similarity to histone H1 from other species was sequenced as part of the contribution of the Montreal Yeast Genome Sequencing Group to chromosome XVI. To reflect this similarity, the gene designation has been changed to HHO1 (Histone H One). The HHO1 gene is highly expressed as poly A+ RNA in yeast. Although deletion of this gene had no detectable effect on cell growth, viability or mating, it significantly altered the expression of β-galactosidase from a CYC1-lacZ reporter. Fluorescence observed in cells expressing a histone H1-GFP protein fusion indicated that histone H1 is localized to the nucleus.©1997 John Wiley & Sons, Ltd.  相似文献   

13.
Aquaporin water channels facilitate the transmembrane diffusion of water and higher organisms possess a large number of isoforms. The genome of the yeast Saccharomyces cerevisiae contains two highly similar aquaporin genes, AQY1 and AQY2. AQY1 has been shown to encode a functional water channel but only in certain laboratory strains. Here we show that the AQY2 gene is interrupted by an 11 bp deletion in 23 of the 27 laboratory strains tested, with the exception of strains from the sigma 1278b background, which also exhibit a functional Aqy1p. However, although the AQY2 gene from sigma 1278b is highly homologous to functional aquaporins, we did not observe Aqy2p-mediated water transport in Xenopus oocytes. A survey of 52 yeast strains revealed that all industrial and wild yeasts carry the allele encoding a functional Aqy1p, while none of these strains appear to have a functional Aqy2p. We conclude that natural and industrial conditions provide selective pressure to maintain AQY1 but apparently not AQY2.  相似文献   

14.
A summary of previously defined phenotypes in the yeast Saccharomyces cerevisae is presented. The purpose of this review is to provide a compendium of phenotypes that can be readily screened to identify pleiotropic phenotypes associated with primary or suppressor mutations. Many of these phenotypes provide a convenient alternative to the primary phenotype for following a gene, or as a marker for cloning a gene by genetic complementation. In many cases a particular phenotype or set of phenotypes can suggest a function for the product of the mutated gene. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this study was to examine the effects of a Saccharomyces cerevisiae live cell product and a S. cerevisiae culture product on the in vitro mixed ruminal microorganism fermentation of ground corn, soluble starch, alfalfa hay, and Coastal bermudagrass hay. In the presence of ground corn, neither concentration (0.35 or 0.73 g/L) of S. cerevisiae culture nor live cells had any effect on final pH, H2, CH4, propionate, or butyrate. The S. cerevisiae culture had no effect on acetate, but both concentrations of S. cerevisiae live cells decreased acetate and the acetate:propionate ratio. When soluble starch was the substrate, both concentrations of S. cerevisiae live cells and 0.73 g/L of S. cerevisiae culture decreased the acetate:propionate ratio. Although the treatment effects were not statistically significant, both concentrations of live cells and 0.73 g/L of the culture decreased lactate concentrations compared with the control incubations. When alfalfa hay served as the substrate, neither the S. cerevisiae culture nor the live cells had an effect on propionate, butyrate, or the acetate:propionate ratio. Both concentrations of S. cerevisiae culture decreased the final pH and in vitro dry matter disappearance, and the 0.73 g/L treatment decreased the amount of acetate. However, both treatments of S. cerevisiae live cells increased final pH and decreased acetate and in vitro dry matter disappearance. Neither yeast treatment had much effect on the Coastal bermudagrass hay fermentations. In general, both S. cerevisiae supplements seemed to have similar effects on the mixed ruminal microorganism fermentation.  相似文献   

16.
Meiosis and sporulation in the yeast Saccharomyces cerevisiae has been classically viewed as an example of unicellular, eukaryotic differentiation that occurs in response to nutritional starvation. We present evidence that S. cerevisiae produces an extracellular factor(s), called meiosis-promoting factor (MEP), that is required, in addition to starvation conditions, for efficient meiosis and sporulation. This factor is secreted and accumulates in a cell density-dependent fashion such that cells at a low density sporulate poorly under conditions in which cells at a high density sporulate efficiently. Conditioned medium from sporulating cells at a high density contains a small anionic molecule that has cytostatic activity and stimulates sporulation of cells at low density under a normal starvation condition. These results indicate that MEP-mediated social communication between cells is required for meiosis and sporulation. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Saccharomyces cerevisiae mutants defective in chromosome segregation   总被引:4,自引:0,他引:4  
We have devised a genetic screen to identify trans-acting factors involved in chromosome transmission in yeast. This approach was designed to potentially identify a subset of genes encoding proteins that interact with centromere DNA. It has been shown that mutations in yeast centromere DNA cause aberrant chromosome segregation during mitosis and meiosis. We reasoned that the function of an altered centromere should be particularly sensitive to changes in factors with which it interacts. We constructed a disomic strain containing one copy of chromosome III with a wild-type centromere and one copy of chromosome III bearing the SUP11 gene and a mutant CEN3. This strain forms white colonies with red sectors due to nondisjunction of the chromosome bearing the mutant centromere. After mutagenesis we picked colonies that exhibited increased nondisjunction of the mutant chromosome as evidenced by increased red-white sectoring. Using this approach, we have isolated three trans-acting chromosome nondisjunction (cnd) mutants that are defective in maintaining chromosomes during mitosis in yeast.  相似文献   

18.
酿酒酵母纤维二糖代谢途径的搭建   总被引:1,自引:1,他引:1  
酒糟中存在着一些未能被酵母消耗的糖,含量较高的如纤维二糖、蜜二糖等,有效利用酒精发酵过程中产生的纤维二糖,具有一定理论和实际意义。采用异硫氰酸胍一酚一氯仿法提取里氏木霉总RNA,分离poly A^ mRNA,通过RT-PCR方法扩增得到β-葡萄糖苷酶基因。构建了重组质粒pYX-BGL,并在酿酒酵母Saccharomyces cerevisiae W303-1A中获得表达,得到的转化子能以纤维二糖为唯一碳源生长。  相似文献   

19.
Synonymous codon usage in Saccharomyces cerevisiae.   总被引:26,自引:0,他引:26  
  相似文献   

20.
Ethyl carbamate (EC) is a probable carcinogen existing in most fermented foods. Throughout traditional fermentation processes, the Chinese fermentation starter plays an important role, but it contains varieties of microorganisms which make inhibiting EC efficiently become a challenge. Therefore, the traditional fermentation starter is substituted with a single yeast strain (Saccharomyces cerevisiae ZJU) to regulate EC catabolism. In this work, S. cerevisiae ZJU can reduce EC formation and the data of EC concentration show that there is 85.6% reduction of EC at most using S. cerevisiae ZJU instead of the traditional fermentation starter. Extracellular urea and citrulline were the leading precursors of EC. The content of amino acids and volatile flavour compounds in the experimental group has no significant influence compared to the natural fermentation. The findings in this work suggest that EC can be regulated by means of the fermentation starters variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号