首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对由单出杆液压缸与二位三通2D阀组成的电液谐振式高频疲劳试验台,因单出杆液压缸无杆腔与2D阀相连,有杆腔恒通油源。而2D阀突破常规电液伺服阀频宽极限,具有宽频带、高频响等特点,通过改变阀芯旋转速度及阀口轴向开度,可对系统分别进行变频、变幅控制。对采用2D阀控制技术的电液谐振式高频疲劳试验台建立数学、仿真模型,并对该试验台谐振工况进行仿真与实验研究,结果表明该系统谐振工况输出位移(载荷力)与激振力大,消耗外界功率低。  相似文献   

2.
矩阵迭代法是振动系统获得模态的经典的数值方法,通常应用于有限元软件或其他数值分析领域.把该方法推广到试验模态技术领域,提出试验模态迭代法,通过假设振型以确定激振力,再激发稳态响应,数次迭代可以获得结构的模态振型.与现行结构共振试验获得模态振型思想完全不同的是,该方法同时调节激振器的激振幅值与相位,经过极少的试验周期,获得振型;振型的纯度仅仅与共振频率的试验精度有关,并且试验实现的复杂性与激振器数量无关.根据本技术进行纯模态共振试验,能极大地降低激振力调整工作量.  相似文献   

3.
随着激振频率的增加,电液疲劳试验机激振输出幅值急剧衰减,激振频率和激振输出幅值两者之间存在相互矛盾的关系,因此提出了利用谐振能量来提高激振输出幅值的方案。该方案通过改变阀控单出杆液压缸无杆腔容积的方法来改变系统的谐振频率,使得谐振频率与激振频率重合,在谐振点进行激振。在对液压动力机构的运动过程进行分析的基础上,建立系统的数学模型,运用四阶龙格库塔的数值方法对其进行求解,并对仿真结果进行理论分析;理论分析表明可以通过改变无杆腔容积来改变系统的谐振频率,且在谐振点处的激振输出幅值有较大幅度的提升;从负载流量曲线上看,由于谐振能量的输出使得在谐振点处的负载流量急剧降低。最后建立实验系统对以上仿真结果进行实验验证。实验结果表明:在谐振点出的激振输出幅值为饱和输出幅值的25%左右,负载流量反而减小了90%左右;通过改变无杆腔的容积能有效改变谐振频率,拓宽电液疲劳试验机应用范围。  相似文献   

4.
介绍顶棚在实车状况下的试验模态分析方法,采用悬挂激振器而车辆接地的单向激振方式,讨论激振点的选取位置,利用PolyMax方法求得顶棚前十阶模态频率及振型,并通过各测点相干性、频响函数曲线和各阶模态MAC值的检验保证模态试验结果的可靠性;找出对车内轰鸣噪声影响显著的敏感频率和薄弱位置,以此为依据优化其结构刚度,实现模态的移频。优化后的顶棚频响函数幅值取得明显改善,降低在敏感转速时的车内轰鸣噪声声压级。  相似文献   

5.
为了分析振动拉削系统在加工过程中电液激振输出幅值稳定性问题,首先引入流量耦合线性模型和拉削负载力模型,构建了双阀激振系统的传递函数,推导了系统输出位移和输出力的时域响应函数;再利用MATLAB仿真计算及绘制开环系统的Bode图和幅值时域响应曲线;最后,利用自行研制的振动拉削实验平台所测得的激振器输出幅值与仿真结果进行对比分析,研究结果表明:激振信号的频率会影响输出波形的平衡位置及波动幅值,激振信号频率越高,输出波形越容易调节;而拉削负载力主要影响输出波形的振荡次数,负载力越大,输出波形越不稳定。因此,为了使拉削过程中激振输出波形更加稳定,一方面可适当提高激振缸缸径和行程的比值,以增大系统极限响应频率,另一方面需蓄能装置或大流量型开关阀平衡激振缸容腔压力配比。  相似文献   

6.
传统的电液激振缸随着激振频率的提高,振动幅值急剧衰减,振幅补偿性能变差。为了解决这一问题,设计了一种双弹簧电液激振缸结构。分析了双弹簧电液激振缸的工作原理,建立了其数学模型和AMESim仿真模型,研究了激振频率、补偿弹簧刚度对其活塞杆位移的影响。结果表明:当激振频率为28 Hz、补偿弹簧刚度为31 N/mm时,激振缸活塞杆的位移增大6.24 mm,相比同一条件下的传统电液激振缸增大了15倍多;在双弹簧电液激振缸的工作过程中,其活塞杆位移振幅存在振荡区和稳定区,稳定区内的振幅大小直接决定了振幅补偿效果的优劣;在补偿弹簧刚度一定的情况下,活塞杆位移振幅不与激振频率呈简单的正相关或负相关关系,而在某一激振频率下谐振现象最明显,能使振幅补偿效果达到最优;激振频率不同,则补偿弹簧最优刚度不同,随着激振频率的提高,补偿弹簧刚度应相应增大。相比于传统的电液激振缸,双弹簧电液激振缸的振动幅值有较大提升,在工程应用中能取得更好的振幅补偿效果。  相似文献   

7.
为了分析间隙对两轴液压振动试验系统动力学响应的影响,建立了间隙副连续碰撞力学模型,将含间隙副的系统模型导入 ADAMS中进行仿真分析,同时,搭建了一套实验系统并进行了简谐异步激振输入下的实验分析。仿真和实验结果表明:在激振器异步且运动副间隙尺寸一定的情况下,两个激振器之间产生了耦合振动效应,其稳态输出加速度响应有明显的波动,同时,随着激振频率和激振幅值的增加,系统峰值加速度响应急剧增加。因此,为了消除间隙副非线性因素的影响,合理设计两轴激振试验系统转动副间隙具有重要意义。  相似文献   

8.
本文对通讯抗震组合柜作了简单的实模态分析。用1250频响分析仪,苹果-Ⅱ微型计算机,激振器及传感器等组成的试验分析系统,对柜体结构进行了动态试验,除求出导纳曲线外,还对奈奎斯特圆作了优化处理,求其最佳的各阶模态频率和阻尼比;并用此模态频率作为激振频率,从而求出各阶模态的主振型。  相似文献   

9.
研制一种新型宽频带激振器,在原有振动测试系统的基础上,将电动式激振与压电式激振这两种方式点结合起来。通过对其进行空载加速度频响测试和力频响测试,实现从20Hz至20kHz较宽范同内的激振,验证了这种新型宽带激振器的可行性。  相似文献   

10.
对三轴振动试验系统进行分析,研究了多输入多输出功率谱复现控制算法。利用HV频响函数估计法对系统进行辨识。针对系统频响矩阵为长方阵并出现奇异点的情况,采用奇异值截断法保证算法的稳定性,并运用迭代控制算法修正驱动谱提高振动控制的精度。通过三轴向振动台与集成该算法的多输入多输出振动控制器进行三轴向振动试验。实验结果表明:基于HV频响函数估计法修正迭代控制算法进行振动试验对功率谱的复现具有较好的精度和工程实用性。  相似文献   

11.
提出了一种采用激振器激励方式的扬声器振动部件共振频率测量方法及系统。采用激振器作为激励被测部件振动的激励源,并通过加速度传感器实时检测夹具的振动加速度(包括幅度和相位),以确保被夹具夹持住的被测部件在测量频率范围内上下平稳振动;通过激光位移传感器测量被测部件在不同频率点振动时的振动位移,可得到被测部件振动的频率响应(被测部件振动加速度和夹具振动加速度的比值的频率响应);根据该频率响应进行计算最后可得到被测部件的共振频率。实验结果表明,实测频率响应的曲线与理论分析相一致,测量结果的可重复性和准确性良好,可测量的振动部件的种类和范围更广。  相似文献   

12.
为了使高方平筛在停车阶段获得较为稳健的减振效果,对采用自调式惯性激振的高方平筛停车过程进行了动力学建模和数值模拟。在考虑三相异步电机制动时的机械特性和滚动轴承摩擦的前提下,建立筛体、悬吊装置和自调式激振装置所组成系统的非线性动力学模型,运用4阶Runge-Kutta数值算法得到了偏心距不变式和偏心距自调式两种激振方式下停车过程的数值解。分析了自调式激振装置中初始偏心距、刚度和阻尼等对停车时间的影响规律。结果表明:只有在合适的参数匹配下,自调式激振方式才能获得较好的减振效果;适中的初始偏心距是提高减振稳健性的关键因素。所得结果对于振动机械中自调式激振装置的设计具有参考价值。  相似文献   

13.
结构损伤诊断的轴向振动原理及模态实验   总被引:1,自引:1,他引:0       下载免费PDF全文
滕海文  王涛  霍达  苏明于 《振动与冲击》2010,29(12):122-125
在理论推导梁轴向振动微分方程基础上,提出一种以轴向振动低阶模态振型二阶导数为损伤指标的结构损伤识别方法。在方钢管构件上布置加速度传感器进行轴向振动模态试验,测试时由信号发生器发出正弦波信号,经功率放大器放大后通过电磁激振器对结构进行激励,同时采集各测点的加速度反应信号。在确定结构共振点后,根据共振点处加速度值,编制轴向振动损伤指标的计算程序,分析结果表明该指标对结构损伤的位置和程度均很敏感,既能精确定位损伤,又能标定损伤程度,即在损伤位置将发生相反方向的突变,且突变幅度随损伤程度增大而增大。  相似文献   

14.
针对传统起停车过程分析采用短时傅里叶变换提取瞬时幅值及相位会损失瞬变信息的不足,用弗德卡曼阶比跟踪原理(Vold-Kalman Filter Based Order Tracking,VKF-OT)结合全息谱原理,提出新的转子起停车故障特征提取方法。由转子起停车瞬态响应数据中提取随转速变化的阶比分量,通过各阶分量复包络直接求幅值、相位,能克服傅里叶变换的平均效应,保留转子振动瞬变信息;通过VKF-OT集成转子截面振动信息,结合全息谱理论绘制阶比全息瀑布图,提取转子起停车状态的故障特征,并用于起停车瞬态动平衡。结果表明,该方法可有效提取转子典型故障特征、降低转子系统一阶临界振动。  相似文献   

15.
结合某河床式水电站实际工程,采用有限单元法,对尾水管内水流脉动压力作用下阻尼弹簧隔振装置对副厂房GIS室的振动影响进行了研究。结果表明:GIS室楼板由隔振弹簧支承于梁柱上后,对副厂房整体结构的振动特性影响很小,GIS室楼板与其支承结构的振动特性差异明显;当隔振系统自振频率在3.5~4.5Hz时,隔振措施能兼顾隔离低频和高频脉动压力的振动影响,特别是能有效减小因高频脉动压力引起的高振动速度和加速度,对结构振动控制十分有利。  相似文献   

16.
传统航天器加速度响应控制振动试验是根据特定的加速度规范,控制振动台台面加速度,这种试验方法会在试件固有频率处产生过试验现象,力限振动试验可以有效地缓解这种过试验.本文基于简单二自由度模型给出了详细计算力限条件的方法,在此方法基础上,推导出了航天器试件支架与振动台台面间力谱和加速度谱,并对试件支架进行力限正弦振动试验和力限随机振动试验,实验结果表明:与传统加速度响应控制方法相比,基于简单二自由度模型力谱条件的力限振动控制试验能够更加真实模拟动力学环境,有效缓解振动过试验,可以为航天器振动试验提供很好的试验依据。  相似文献   

17.
为了研究几何非线性条件下斜拉桥索梁耦合振动与索间作用问题,以两条斜拉索与简支梁组合体系为简化模型,利用D’Alembert原理建立考虑初始垂度的索梁体系非线性偏微分方程,设定索的前两阶复合振动模态与梁的基本模态,运用Galerkin方法将其离散为二阶常微分方程,并使用四阶—五阶Runge-Kutta方法对索与梁的振动响应进行了数值分析。结果表明:在双索单梁组合结构中,特定频率条件下一阶模态与主梁强烈耦合,二阶模态与主梁小程度耦合;与单梁单索结构相比,多索导致主梁频率增大,索间作用使得索振幅增大、拍频降低,面内一阶模态对索梁变化更敏感;当索梁频率不变时,索间作用对耦合振动产生的索大幅振动有明显抑制作用,且索梁结构对主梁初位移变化更敏感。  相似文献   

18.
 In order to effectively control the low frequency vibration of ship machinery,a passive-active hybrid vibration isolation mount using maglev actuator was designed. Maglev actuator is excellent for active vibration isolation, with non-contact structure, low stiffness and rapid response. However, the actuator’s nonlinearity has to be restrained by control algorithm. The nonlinearity of maglev actuator was analyzed, the nonlinear reverse model of actuator was built through theoretical analysis and experimental correction, and an improved FxLMS algorithm based on reverse model linearization and frequency range division control was put forward, which has the advantage of low computation load for real time control. Experiments were performed on a multiple-DOF active vibration isolation system, results show that the improved FxLMS algorithm could effectively reduce the vibration energy at targeted frequency, and well restrain the nonlinearity-induced vibration.  
   相似文献   

19.
为了研究扰动影响下梁式结构的动力学响应与主动控制,首先基于Timoshenko梁理论,采用行波方法建立了悬臂梁结构的动力学模型并获得了其在扰动下的精确动力学响应,进一步得到结构中传播的功率流,并以此为目标函数,优化得到了最优控制力的大小与相位,然后对结构施加最优控制力,实现了Timoshenko梁结构的功率流主动控制。对Timoshenko梁结构动力学响应与功率流主动控制方法进行了数值计算,并与Euler-Bernoulli梁理论计算结果进行了对比分析。结果表明:采用行波方法计算梁结构的动力学响应准确可靠;Timoshenko梁模型较Euler-Bernoulli梁模型在中、高频段更为精确,且更接近工程实际;通过数值计算与分析验证了基于行波方法功率流主动控制的正确性与有效性,并且功率流主动控制可以明显降低梁式结构全频域内的抖动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号