首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential migration of genotoxic compounds into mineral water stored in polyethylene terephthalate (PET) bottles was evaluated by an integrated chemical/biological approach using short-term toxicity/genotoxicity tests and chemical analysis. Six commercial brands of still and carbonated mineral water bottled in PET and in glass were stored at 40 °C for 10 days in a stove according to the standard EEC total migration test (82/711/EEC), or at room temperature in the dark. After treatment, the samples were analysed using gas-chromatography/mass spectrometry (GC/MS) to detect volatile and non-volatile compounds, the Microtox® test to evaluate potential toxicity of the samples, and three mutagenicity tests - Tradescantia and Allium cepa micronucleus tests and the Comet assay on human leukocytes - to detect their genotoxic activity.GC/MS analysis did not detect phthalates or acetaldehyde in the water samples. The Microtox® test found no toxic effects. Mutagenicity tests detected genotoxic properties of some samples in both PET and glass bottles. Statistical analyses showed a positive association between mineral content and mutagenicity (micronuclei in A. cepa and DNA damage in human leukocytes). No clear effect of treatment and PET bottle was found. These results suggest the absence of toxic compounds migrating from PET regardless of time and conditions of storage. In conclusion, bottle material and stove treatment were not associated with the genotoxic properties of the water; the genotoxic effects detected in bottled water may be related to the characteristics of the water (minerals and CO2 content).  相似文献   

2.
This study monitored the release of mutagenic/carcinogenic compounds into mineral water (natural and carbonated) from polyethylene terephthalate (PET) bottles, using a plant mutagenicity test which reveals micronuclei formation in Tradescantia pollen cells (Trad/MCN test), a DNA damage assay (Comet assay) on human leukocytes and gas chromatography/mass spectrometry (GC/MS) for the characterisation of migrants. The water samples were collected at a bottling plant and stored in PET bottles for a period ranging from 1 to 12 months. Every month some samples were randomly collected and lyophilised, the residual powders were extracted with organic solvents and then analysed by GC/MS and tested for DNA damage in human leukocytes, or reconstituted with distilled water to obtain concentrates for the exposure of Tradescantia inflorescences. Micronuclei increase in pollen was found only in natural mineral water stored for 2 months. DNA-damaging activity was found in many of the natural and carbonated water samples. Spring water was negative in the plant micronuclei test and the Comet assay, whereas distributed spring water showed DNA-damaging effects, suggesting a possible introduction of genotoxins through the distribution pipelines. GC/MS analysis showed the presence in mineral water of di(2-ethylhexyl)phthalate, a nongenotoxic hepatocarcinogenic plasticizer, after 9 months of storage in PET bottles.  相似文献   

3.
The Sb leaching from polyethylene terephthalate (PET) package material into 10 different brands of still (non-carbonated) and sparkling (carbonated) Hungarian mineral water purchased in supermarkets was investigated by inductively coupled plasma sector field mass spectrometry (ICP-SF-MS). The Sb concentration measured in PET package materials varied between 210 and 290 mg/kg. Generally, the Sb concentration of still mineral water was lower than that of sparkling in the case of identical storage time. For modelling improper storage conditions, storage time (10-950 days), temperature (22 °C-70 °C), illumination (dark vs. 23 W daylight lamp for 116 h) as well as bottle volume (0.5, 1.0 and 1.5 L) were taken into consideration. Under certain extreme light and temperature storage conditions, the Sb concentration of some samples exceeded the concentration value of 2 ng/mL. The extent of Sb leaching from the PET recipients of different brands of mineral water can differ by even one order of magnitude in experiments conducted under the same conditions. Thus, the adequate selection of the polymer used for the production of the PET bottle for the solar water disinfection (SODIS) procedure seems to ensure low Sb levels in the water samples.  相似文献   

4.
Antimony is a regulated contaminant that poses both acute and chronic health effects in drinking water. Previous reports suggest that polyethylene terephthalate (PET) plastics used for water bottles in Europe and Canada leach antimony, but no studies on bottled water in the United States have previously been conducted. Nine commercially available bottled waters in the southwestern US (Arizona) were purchased and tested for antimony concentrations as well as for potential antimony release by the plastics that compose the bottles. The southwestern US was chosen for the study because of its high consumption of bottled water and elevated temperatures, which could increase antimony leaching from PET plastics. Antimony concentrations in the bottled waters ranged from 0.095 to 0.521 ppb, well below the US Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 6 ppb. The average concentration was 0.195+/-0.116 ppb at the beginning of the study and 0.226+/-0.160 ppb 3 months later, with no statistical differences; samples were stored at 22 degrees C. However, storage at higher temperatures had a significant effect on the time-dependent release of antimony. The rate of antimony (Sb) release could be fit by a power function model (Sb(t)=Sb 0 x[Time, h]k; k=8.7 x 10(-6)x[Temperature ( degrees C)](2.55); Sb 0 is the initial antimony concentration). For exposure temperatures of 60, 65, 70, 75, 80, and 85 degrees C, the exposure durations necessary to exceed the 6 ppb MCL are 176, 38, 12, 4.7, 2.3, and 1.3 days, respectively. Summertime temperatures inside of cars, garages, and enclosed storage areas can exceed 65 degrees C in Arizona, and thus could promote antimony leaching from PET bottled waters. Microwave digestion revealed that the PET plastic used by one brand contained 213+/-35 mgSb/kg plastic; leaching of all the antimony from this plastic into 0.5L of water in a bottle could result in an antimony concentration of 376 ppb. Clearly, only a small fraction of the antimony in PET plastic bottles is released into the water. Still, the use of alternative types of plastics that do not leach antimony should be considered, especially for climates where exposure to extreme conditions can promote antimony release from PET plastics.  相似文献   

5.
Solar water disinfection (SODIS) is a simple, effective and inexpensive water treatment procedure suitable for application in developing countries. Microbially contaminated water is filled into transparent polyethylene terephthalate (PET) plastic bottles and exposed to full sunlight for at least 6 h. Solar radiation and elevated temperature destroy pathogenic germs efficiently. Recently, concerns have been raised insinuating a health risk by chemicals released from the bottle material polyethylene terephthalate (PET). Whereas the safety of PET for food packaging has been assessed in detail, similar investigations for PET bottles used under conditions of the SODIS treatment were lacking until now. In the present study, the transfer of organic substances from PET to water was investigated under SODIS conditions using used colourless transparent beverage bottles of different origin. The bottles were exposed to sunlight for 17 h at a geographical latitude of 47° N. In a general screening of SODIS treated water, only food flavour constituents of previous bottle contents could be identified above a detection limit of 1 μg/L. Quantitative determination of plasticisers di(2-ethylhexyl)adipate (DEHA) and di(2-ethylhexyl)phthalate (DEHP) revealed maximum concentrations of 0.046 and 0.71 μg/L, respectively, being in the same range as levels of these plasticisers reported in studies on commercial bottled water. Generally, only minor differences in plasticiser concentrations could be observed in different experimental setups. The most decisive factor was the country of origin of bottles, while the impact of storage conditions (sunlight exposure and temperature) was less distinct. Toxicological risk assessment of maximum concentrations revealed a minimum safety factor of 8.5 and a negligible carcinogenic risk of 2.8 × 10−7 for the more critical DEHP. This data demonstrate that the SODIS procedure is safe with respect to human exposure to DEHA and DEHP.  相似文献   

6.
A method for preserving natural water samples for dissolved oxygen analysis is recommended. The conventional method of using greased glass stoppers have been found to cause an increase in oxygen concentration by 12% over 1-month period as a result of evaporation of water sample through micro-gaps and concurrent intrusion of air into the water sample bottles. Sealing the sample bottles with water has been found to be the optimal storage method. It permits a 100.2 +/- 0.3% recovery of dissolved oxygen concentration from storage seawater samples over 4 months.  相似文献   

7.
Indoor and outdoor concentration levels of 21 carbonyl compounds and five BTEX (benzene, toluene, ethylbenzene and xylenes) were measured in four hospitals of Guangzhou from 2nd January to 20th March 2004. Samples were collected in five consecutive daytimes for each hospital. Among most of the samples, acetone was the most abundant carbonyl, followed by acetaldehyde, 2-butanone or formaldehyde. Toluene was the most abundant BTEX and the others were at similar levels. The relatively higher acetone concentrations might have resulted from the high level of background in Guangzhou area due to emission of the factories and LPG-fuel vehicles, and also for the special weather conditions during sampling time. The high concentration of acetaldehyde, which was even higher than that of formaldehyde, might be resulted from the wide use of ethanol in hospital. The partial oxidation of ethanol may form acetaldehyde. The indoor concentrations of carbonyls and BTEX were found a little higher than their outdoor counterparts with only a few exceptions, which showed the anthropogenic sources for these compounds. The low correlations between most carbonyls and BTEX concentrations might be caused by their complex sources. Finally, the human exposure levels of formaldehyde and acetaldehyde in hospitals are discussed.  相似文献   

8.
Seasonal and diurnal variations of carbonyl compounds were investigated at two sampling sites (Liwan and Wushan) in the ambient air of Guangzhou, China. Air samples were collected during 2005 from January to November, and carbonyl compounds were analyzed with HPLC. The results show that carbonyls exhibit distinct seasonal variation. The total concentrations of 21 carbonyls detected ranged from 2.64 to 103.6 μg m3 at Liwan and from 5.46 to 89.9 μg m3 at Wushan, respectively. The average total concentrations of carbonyls at both Liwan and Wushan decreased in order of summer>spring>autumn>winter. Formaldehyde, acetaldehyde, and acetone were the most abundant carbonyl compounds, which accounted for more than 60% of the total concentrations of carbonyls. The mean concentration ratios of summer/winter were all > 1.0 for the total concentrations and the individual carbonyl compound. The diurnal variation of carbonyls was not distinct in this study. The average concentration ratios of formaldehyde/acetaldehyde (C1/C2) varied from 0.71 to 1.32 and 0.65 to 1.14 at Liwan and Wushan, respectively, and the average concentration ratios of acetaldehyde/propionaldehyde (C2/C3) varied from 5.42 to 7.70 and 5.02 to 13.9 in Liwan and Wushan, respectively. Regarding photochemical reactivity of carbonyls and the ozone production, acetaldehyde, butyraldehyde, formaldehyde, and valeraldehyde account for 75-90% to the total propene-equivalent concentrations, while formaldehyde, acetaldehyde, valeraldehyde, butyraldehyde, and propionaldehyde contribute 89-96% to the total ozone formation potentials (ranging from 105 to 274 μg m-3). The ozone formation potentials in summer were higher by 1-2 times than those in the other seasons.  相似文献   

9.
Andra SS  Makris KC  Shine JP 《Water research》2011,45(20):6677-6687
Microbial-, and chemical-based burden of disease associated with lack of access to safe water continues to primarily impact developing countries. Cost-effective health risk-mitigating measures, such as of solar disinfection applied to microbial-contaminated water stored in plastic bottles have been increasingly tested in developing countries adversely impacted by epidemic water-borne diseases. Public health concerns associated with chemical leaching from water packaging materials led us to investigate the magnitude and variability of antimony (Sb) and bromine (Br) leaching from reused plastic containers (polyethylene terephthalate, PET; and polycarbonate, PC) subject to UV and/or temperature-driven disinfection. The overall objective of this study was to determine the main and interactive effects of temperature, UV exposure duration, and frequency of bottle reuse on the extent of leaching of Sb and Br from plastic bottles into water. Regardless of UV exposure duration, frequency of reuse (up to 27 times) was the major factor that linearly increased Sb leaching from PET bottles at all temperatures tested (13-47 °C). Leached Sb concentrations (∼360 ng L−1) from the highly reused (27 times) PET bottles (minimal Sb leaching from PC bottles, <15 ng L−1) did not pose a serious risk to human health according to current daily Sb acceptable intake estimates. Leached Br concentrations from both PET and PC containers (up to ∼15 μg L−1) did not pose a consumer health risk either, however, no acceptable daily dose estimates exist for oral ingestion of organo-brominated, or other plasticizers/additives compounds if they were to be found in bottled water at much lower concentrations. Additional research on potential leaching of organic chemicals from water packaging materials is deemed necessary under relevant environmental conditions.  相似文献   

10.
Lightweight soil technology has been widely used in construction projects to solve soft ground problems. Previous work, however, has shown that the maximum interior temperature of field test bodies reaches to about 90°C. On the other hand, industrial waste disposal is an increasing problem. PET (polyethylene terephthalate) waste is now generated in vast quantities to increased consumption of drinking water sold in PET bottles. Making effective use of PET waste as a ground material may help solve the problem of its disposal. This paper describes the effects of initial high temperature curing on unconfined compressive strength and the microstructure of foamed mixture lightweight soil containing PET flake. Increase in PET-cement ratio lessened the decrease in unconfined compressive strength with increasing initial temperature. This property makes PET flake useful as a construction material. However, unconfined compressive strength decreases with increasing initial temperature at all PET-cement ratios. Observations show that the microstructure of foamed mixture lightweight soil containing PET flake have noticeable cracks if samples are cured at 90°C for 1 day; the PET flake is not completely combined with the matrix. The formation of this microstructure is the main factor of the remarkable strength decrease based on initial high temperature curing.  相似文献   

11.
Although researchers today generally employ appropriate techniques for the storage and preservation of aqueous samples for ambient-level mercury (ppb) speciation, these methods continue to be poorly documented. Numerous experiments were thus conducted to investigate the effects of acidification and bottle type on holding time for various mercury species [elemental mercury (Hg(0)), ionic mercury (Hg(II)), dimethyl mercury (DMHg), monomethyl mercury (MMHg), and dissolved-to-particulate ratio] as well as total mercury (THg). We documented that THg is stable for at least 300 days when stored at 0.4-0.5% acidity in either Teflon or glass bottles. In cases where THg is adsorbed to bottle walls, the addition of BrCl at least 24 h before analysis allowed all Hg to be quantitatively recovered. Polyethylene bottles allowed diffusion of Hg(0) through the bottle walls to or from the sample, depending on the Hg concentration of the sample and storage atmosphere. MMHg in freshwater samples can be stored refrigerated and unacidified for days to weeks with no observed degradation of MMHg. For long-term storage (at least 250 days), samples should be acidified with 0.4% HCl (v/v) and kept in the dark to avoid photodegradation (approximate t(1/2)=6 months). For saltwater samples, preservation with 0.2% (v/v) H(2)SO(4) is preferred to avoid exceeding the optimal chloride concentration if the distillation procedure is used for MMHg determination. For volatile species (Hg(0) and DMHg), samples should be collected in completely full glass bottles with Teflon-lined caps, as these species are lost rapidly (t(1/2)=10-20 h) from Teflon and polyethylene bottles. Because acids can enhance the rapid oxidation of volatile species, these samples should be stored refrigerated and unacidified and processed within 1-2 days if they cannot be purged and trapped in the field. Hg(II) and the dissolved-to-particulate ratio are more stable and can be stored for a period of days to weeks without preservation.  相似文献   

12.
Wang Y  Hammes F  Egli T 《Water research》2008,42(16):4319-4326
Groundwater is a major source for bottled water, which is increasingly consumed all over the world. Some categories of bottled water can be subjected to treatments such as disinfection prior to bottling. In the current study, we present the quantitative impact of industrial-scale micro-filtration (0.22 microm pore size) on native microbial communities of groundwater and evaluate subsequent microbial growth after bottling. Two separate groundwater aquifers were tested. Flow-cytometric total cell concentration (TCC) and total adenosine tri-phosphate (ATP) analysis were used to quantify microbial abundance. The TCC of the native microbial community in both aquifers was in the range of 10(3)-10(4) cells/ml. Up to 10% of the native microbial community was able to pass through the cartridge filtration units installed at both aquifers. In addition, all samples (either with or without 0.22 microm filtration) showed significant growth after bottling and storage, reaching average final concentrations of 1-3 x 10(5) cells/ml. However, less growth was observed in carbon-free glassware than in standard polyethylene terephthalate (PET) bottles. Furthermore, our results showed that filtration and bottling can alter the microbial community patterns as observed with flow cytometry. The current study established that industrial-scale micro-filtration cannot serve as an absolute barrier for the native microbial community and provided significant insight to the impact of filtration and bottling on microbial concentrations in bottled water.  相似文献   

13.
During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.  相似文献   

14.
A declaration of conformity according to European regulation No. 10/2011 is required to ensure the safety of plastic materials in contact with foodstuffs. This regulation established a positive list of substances that are authorized for use in plastic materials. Some compounds are subject to restrictions and/or specifications according to their toxicological data. Despite this, the analysis of PET reveals some non-intentionally added substances (NIAS) produced by authorized initial reactants and additives.Genotoxic and estrogenic activities in PET-bottled water have been reported. Chemical mixtures in bottled water have been suggested as the source of these toxicological effects. Furthermore, sample preparation techniques, such as solid-phase extraction (SPE), to extract estrogen-like compounds in bottled water are controversial. It has been suggested that inappropriate extraction methods and sample treatment may result in false-negative or positive responses when testing water extracts in bioassays. There is therefore a need to combine chemical analysis with bioassays to carry out hazard assessments.Formaldehyde, acetaldehyde and antimony are clearly related to migration from PET into water. However, several studies have shown other theoretically unexpected substances in bottled water. The origin of these compounds has not been clearly established (PET container, cap-sealing resins, background contamination, water processing steps, NIAS, recycled PET, etc.).Here, we surveyed toxicological studies on PET-bottled water and chemical compounds that may be present therein. Our literature review shows that contradictory results for PET-bottled water have been reported, and differences can be explained by the wide variety of analytical methods, bioassays and exposure conditions employed.  相似文献   

15.
This study investigated the utilization of polyethylene terephthalate (PET) bottle fibre recycled as fibre-reinforced renders mortar. The fibres were obtained by simple mechanical cutting from bottles. Investigation was carried out on cement-lime mortar samples. Different volumes of fibres, i.e. 0%, 0.5%, 1.0% and 1.5%, were introduced in dry mortar mixes. Specifically, the mechanical properties as flexure, compressive strengths and mortar toughness were measured. The results indicate that the incorporation of PET fibres significantly improve the flexural strength of mortars with a major improvement in mortar toughness. The maximum volume of PET fibre for a desired workability was 1.5%.  相似文献   

16.
The microfloro of a mineral water (Vittel Grande Source) has been studied after 0, 1, 3, 6 and 12 weeks storage in five kinds of bottle: (1) 1 litre glass, from a bottling line; (2) 1 litre glass, laboratory cleaned and sterilized, and filled by hand at the spring; (3) 1.5 litre PVC flasks taken from another line; (4) 1.5 litre PVC flasks taken after air blowing on the line and filled by hand at the spring; and (5) the same as (4) but rinsed once before filling, with the Grande Source water itself. We determined the numbers of total bacteria by an automated epifluorescence microscopic technique, the numbers of INT+ bacteria (able to reduce 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium), and the numbers of colony forming units in nutrient agar, incubated at 30°C for 48 h. Of the bacteria isolated, we identified 1754 strains by classical procedures, and with API 20 NE strips for the Gram-negative rods.Immediately after bottling, an unexpectedly high number of bacteria was found (approx. 103 ml−1), most of which were minute and gave a weak green fluorescence after acridine staining. Thus a high sensitivity (Norticon) video tube had to be used for enumeration by the image analysing system. These minibacteria were probably dormant, and few (<0.01) were viable on agar.Whatever the type of bottle, multiplication started early and reached approx. 2 · 105 ml−1 by the 7th day, according to a typical saturation kinetics. In contrast to this, the colony forming ability was achieved later, and the transformation velocity depended on the type of sample; it was rapid in the PVC flasks filled on the line, slow in the glass bottles taken on the line, and intermediate in the bottles of PVC or of laboratory cleaned glass filled at the spring.The numbers of respiring (INT+) cells were not recorded at zero time (t0) but were found to remain constant or slowly decline from the 7th day to the 12th week. They were sometimes equalled but never exceeded by the numbers of viable bacteria.The species composition of the microflora at t0 could not be determined precisely because of its scarcity. Afterwards, the viable microflora consisted for the most part (>80%) of five species (Pseudomonas fluorescens, Acinetobacter lwoffi, Ps. alcaligenes, Ps. paucimobilis and Ps. vesicularis). Eleven other groups were identified, each accounting for < 1% of the viable microflora. The diversity was somewhat smaller in the samples taken from the bottling lines, because of a prevailing species Ps. paucimobilis in the glass bottles, and A. lwoffi in the PVC flasks.Finally, the use of epifluorescence microscopy has allowed us to describe a new proposal for the fate of bacteria in bottled water. From a preexisting flora of minibacteria, unable to grow on agar, an early multiplication of 7 or 8 generations occurs, regardless of the type of bottle. This leads to a population of approx. 2 · 105 ml−1 in 7 days. The rate of ability to give rise to culturable forms on agar depends on the mode of cleaning and filling of the bottles, rather than the material from which they are made.  相似文献   

17.
The microplastic particles (MPs) and effects of storage time and direct sunlight on the MPs in bottled mineral waters were investigated by three experiments conditions. The mean MPs concentration was 63.9 ± 38.9 MPs/L. Pellet forms, white/yellow colour and sizes < 100 μm were predominant MPs, accounted for 35.3%, 51% and 60.2% of the total MPs, respectively. Storage of bottled water under darkness and sunlight caused an increase of 1.5% and 2.5% of MPs pollution, respectively. Also, the estimated daily intake (EDI) of MPs was 2.1, 6.4 and 9.6 MPs/kg BW.day for adults, children and infants, respectively. It is concluded that high storage time and direct sunlight may lead to a greater MPs pollution in mineral water and also high human intake through drinking bottled water. Therefore, it is suggested to reduce the expiry date of the bottled mineral water and avoid sunlight contact before consumption.  相似文献   

18.
The use of uni‐materials can reduce the total waste generation by a high recycling rate. This study assesses the public's willingness to pay (WTP) a premium for the uni‐material beverage container (UBC) in Korea using a specific case of bottled mineral water in polyethylene terephthalate (PET). For this purpose, a contingent valuation (CV) survey of 1000 consumers was conducted to derive the additional WTP for the mineral water in UBC instead of that in non‐UBC. Given that the average price of the mineral water (500 mL) in non‐UBC was KRW 1000 (USD 0.88), the mean additional WTP a premium for that in UBC was estimated to be KRW 107 (USD 0.09). This value amounts to 10.7% of price of the mineral water in non‐UBC and can be interpreted as the public value of the UBC. The consumers in Korea are ready to pay a significant premium for UBCs.  相似文献   

19.
Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa,Mexico   总被引:6,自引:0,他引:6  
Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.  相似文献   

20.
The concentration and physico-chemical state of 18 trace and major elements in river and lake waters were studied as a function of time (2h-35 days), for which the samples of water were stored in polyethylene bottles. The methods of investigation were dialysis, centrifugation, ion exchange filtration and electrophoresis, combined with instrumental neutron activation analysis. It was shown that considerable amounts of Mn, Co, Al, Sc, La, Ce, Fe, Cr and Th may be lost by the adsorption to the walls of polyethylene containers and that the ratio of forms of existence of Co, Mn, La, Ce, Sm, Fe, and Cr in the solution may be substantially changed during the storage for one week or more. Probable interpretations of these changes are given. Conclusions are also drawn about the state of individual trace and major elements in the waters studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号