首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The MAP kinase pathway has been shown to be active in many growth factor signaling systems, including that of prolactin (PRL). In our studies, the main objective was to examine the possible involvement of MEK kinases (Map/Erk kinase kinases) in PRL-stimulated mitogenic and lactogenic processes. We used the MEK kinase inhibitor PD 098059 to block MEK kinase activation in the Nb2 cell line and mammary gland explants derived from 12- to 14-day pregnancy mice. PD 098059 attenuated PRL-induced Nb2 cell mitogenesis at 10 microM and a maximum inhibition was observed at 100 microM. In cultured mammary tissues, PD 098059 at 100 microM had no effect on the PRL stimulation of lipid, casein and lactose synthesis and iodide uptake. Further, the growth-inhibitory effect of PD 098059 on Nb2 cells was ameliorated when the drug was removed from the culture medium, indicating that PD 098059 acts in a reversible manner. When MEK1 was immunoprecipitated from PD 098059 and/or PRL treated Nb2 cells, PRL-stimulated MEK1 kinase activity was directly inhibited by PD 098059 at concentrations employed in the culture experiments. PRL has no effect on the tyrosyl phosphorylation of MAP kinases in cultured mammary tissues derived from pregnant mice, whereas earlier we found that PRL stimulates the tyrosyl phosphorylation of all four MAP kinases in Nb2 cells. The results suggest that the MAP kinase pathway plays an important role in the PRL stimulation of Nb2 cell mitogenesis but is not involved in the PRL stimulation of milk product synthesis.  相似文献   

4.
The mechanism of selenocysteine insertion into proteins is distinct from all other amino acids in all lines of descent in that it needs specific protein cofactors and a structurally unique tRNA(Sec). It is first aminoacylated with serine and further recognized among all other serylated serine isoacceptors by a selenocysteine synthase and is converted to selenocysteyl-tRNA(Sec). We present here the complete set of identity elements for selenylation of mammalian seryl-tRNA(Sec) and show that the transplantation of these elements into normal serine tRNA allows its selenylation. Four particular structural motifs differentiate eukaryotic tRNA(Sec) from normal tRNA(Ser): the orientation of the extra arm, the short 4 bp T psi C-stem, the extra long 9 bp acceptor-stem and the elongated 6 bp dihydrouridine-stem. Only the last two are essential and only together sufficient for selenocysteine synthesis, whereby the additional base-pairs of the acceptor-stem may be replaced by non-paired nucleotides. Each exchange of the first three structural motifs mentioned above between tRNA(Ser) and tRNA(Sec) resulted in a significant loss of serylation, indicating that the overall composition of particular structure elements is necessary to maintain normal functions of tRNA(Sec). Since we find that all seryl-tRNAs which are selenylated are also substrates for serine phosphorylation we propose that phosphoseryl-tRNA(Sec) is a storage form of seryl-tRNA(Sec).  相似文献   

5.
6.
7.
We have established a cell culture system that reproduces morphogenic processes in the developing mammary gland. EpH4 mouse mammary epithelial cells cultured in matrigel form branched tubules in the presence of hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the c-met tyrosine kinase receptor. In contrast, alveolar structures are formed in the presence of neuregulin, a ligand of c-erbB tyrosine kinase receptors. These distinct morphogenic responses can also be observed with selected human mammary carcinoma tissue in explant culture. HGF/SF-induced branching was abrogated by the PI3 kinase inhibitors wortmannin and LY294002. In contrast, neuregulin- induced alveolar morphogenesis was inhibited by the MAPK kinase inhibitor PD98059. The c-met-mediated response could also be evoked by transfection of a c-met specific substrate, Gab1, which can activate the PI3 kinase pathway. An activated hybrid receptor that contained the intracellular domain of c-erbB2 receptor suffices to induce alveolar morphogenesis, and was observed in the presence of tyrosine residues Y1028, Y1144, Y1201, and Y1226/27 in the substrate-binding domain of c-erbB2. Our data demonstrate that c-met and c-erbB2 signaling elicit distinct morphogenic programs in mammary epithelial cells: formation of branched tubules relies on a pathway involving PI3 kinase, whereas alveolar morphogenesis requires MAPK kinase.  相似文献   

8.
We have investigated phase II activation of the food-derived mutagen 2-hydroxyamino-1-methyl-6-phenyl[4,5-b]pyridine (N-OH-PhIP) by cytosolic acetyltransferase, sulfotransferase, and tRNA synthetase/kinase enzymes from human breast tissue. Cytosol from homogenates of mammary gland tissue obtained from breast-reduction surgery or mastectomy was incubated with and without enzyme-specific cofactors, and mutagen binding of calf thymus DNA was quantified by 32P-postlabeling. In addition, microsomal fractions of mammary epithelial cells from some individuals were examined for prostaglandin H synthetase activation of N-OH-PhIP. Our results show that all four enzymes can participate in activating N-OH-PhIP, thus inducing PhIP-DNA adduct formation in human mammary cells. However, not all individuals exhibited all these activities; instead each individual showed a combination of one or more activation pathways. The present findings demonstrate that the human mammary gland has the capacity to metabolically activate a dietary mutagen by several enzyme systems, including acetyltransferase, sulfotransferase, tRNA synthetase/kinase, and prostaglandin hydroperoxidase catalysis.  相似文献   

9.
10.
Kinases mediating phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in intact cells remain to be fully characterized. Platelet-activating factor stimulation of human neutrophils increases cPLA2 phosphorylation. This increase is inhibited by PD 98059, a mitogen-activated protein (MAP)/extracellular signal-regulating kinase (erk) 1 inhibitor, but not by SB 203580, a p38 MAP kinase inhibitor, indicating that this action is mediated through activation of the p42 MAP kinase (erk2). However, platelet-activating factor-induced arachidonic acid release is inhibited by both PD 98059 and SB 203580. Stimulation by TNF-alpha increases cPLA2 phosphorylation, which is inhibited by SB 203580, but not PD 98059, suggesting a role for p38 MAP kinase. LPS increases cPLA2 phosphorylation and arachidonic acid release. However, neither of these actions is inhibited by either PD 98059 or SB 203580. PMA increases cPLA2 phosphorylation. This action is inhibited by PD 98059 but not SB 203580. Finally, FMLP increases cPLA2 phosphorylation and arachidonic acid release. Interestingly, while the FMLP-induced phosphorylation of cPLA2 is not affected by the inhibitors of the p38 MAP kinase or erk cascades, both inhibitors significantly decrease arachidonic acid release stimulated by FMLP. SB 203580 or PD 98059 has no inhibitory effects on the activity of coenzyme A-independent transacylase.  相似文献   

11.
12.
13.
14.
We have assessed five signal transduction pathways to determine the role each might play in the malignant transformation of mammary epithelium initiated by neu, heregulin/NDF, TGFalpha, v-Ha-ras and c-myc in transgenic mice. The study involves a molecular and pharmacologic assessment of Erk/MAP kinase, Jnk/SAP kinase, PI 3-kinase, protein kinase C, and the Src-related kinases Lck and Fyn. Our results indicate that oncogenes capable of transforming mammary gland epithelium activate and require specific signal transduction pathways. For example, mammary tumors initiated by neu, v-Ha-ras and c-myc have high levels of active Erk/MAP kinase and their anchorage independent growth is strongly inhibited by PD098059, an inhibitor of Mek/ MAP kinase kinase. By contrast, Erk/MAP kinase activity is weak in tumors initiated by TFGalpha and heregulin/NDF and the corresponding cell lines are not growth inhibited by PD098059. Similarly, PI 3-kinase is strongly activated in neu, TGFalpha and heregulin/NDF initiated tumor cell lines, but not in c-myc or v-Ha-ras initiated tumor cell lines. The anchorage independent growth of all these tumor cell lines are, however, inhibited by the specific PI 3-kinase inhibitor LY294001. Further illustrating this oncogene-based specificity, PP1, a specific inhibitor of the Src-like kinases, Lck and Fyn, blocks anchorage-independent cell growth only in the TGFalpha initiated mammary tumor cell line. Taken together with additional observations, we conclude that certain oncogenes reliably require the recruitment/activation of specific signal transduction pathways. Such specific relationships between the initiating oncogene and a required pathway may reflect a direct activating effect or the parallel activation of a pathway that is a necessary oncogenic collaborator for transformation in the mammary gland. The work points to a molecular basis for targeting therapy when an initiating oncogene can be implicated; for example, because of amplification, increased expression, genetic alteration, or heritable characteristics.  相似文献   

15.
Ligand binding to vascular endothelial cell growth factor (VEGF) receptors activates the mitogen-activated protein kinases extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK). Possible cross-communication of ERK and JNK effecting endothelial cell (EC) actions of VEGF is poorly understood. Incubation of EC with PD 98059, a specific mitogen-activated protein kinase kinase inhibitor, or transfection with Y185F, a dominant negative ERK2, strongly inhibited VEGF-activated JNK. JNK was also activated by ERK2 expression in the absence of VEGF, inhibited 82% by co-transfection with dominant negative SEK-1, indicating upstream activation of JNK by ERK. VEGF-stimulated JNK activity was also reversed by dominant negative SEK-1. Other EC growth factors exhibited similar cross-activation of JNK through ERK. VEGF stimulated the nuclear incorporation of thymidine, reversed 89% by PD 98059 and 72% by Y185F. Dominant negative SEK-1 or JNK-1 also significantly reduced VEGF-stimulated thymidine incorporation. Expression of wild type Jip-1, which prevents JNK nuclear translocation, inhibited VEGF-induced EC proliferation by 75%. VEGF stimulated both cyclin D1 synthesis and Cdk4 kinase activity, inhibited by PD 98059 and dominant negative JNK-1. Important events for VEGF-induced G1/S progression and cell proliferation are enhanced through a novel ERK to JNK cross-activation and subsequent JNK action.  相似文献   

16.
Addition of 3,5,3'-triiodo-L-thyronine to cultures of mammary gland explants in serumfree medium containing insulin, hydrocortisone and prolactin results in a 3 to 5-fold increase in the activity of the milk-protein alpha-lactalbumin over that seen in the presence of the latter three hormones alone. The thyroid hormone does not act by substituting for any of the other hormones. It need not be present throughout the culture period but can act if added along with prolactin after insulin and hydrocortisone have induced formation of the rough endoplasmic reticulum. Delayed addition of the thyroid hormone also results in further stimulation of cells already responding maximally to insulin, hydrocortisone and prolactin. These effects of triiodothyronine are not blocked by progesterone at 1 microng per ml. They are, however, blocked by the addition of inhibitors of RNA (actinomycin D) or protein (cycloheximide or puromycin) synthesis, suggesting that the thyroid hormone increases the synthesis of the alpha-lactalbumin molecule itself. The thyroid hormone appears to act by altering the responsiveness of the mammary gland explants to prolactin, but not to insulin or hydrocortisone. In the presence of 10-9M triiodothyronine, enhanced alpha-lactalbumin activity is consistently obtained at prolactin concentrations as low as 4.5 x 10(-12)M whereas, in the absence of the thyroid hormone, ten times more prolactin (4.5 x 10(-11)M) is needed to obtain an increase in alpha-lactalbumin activity.  相似文献   

17.
Two new analogues of bovine placental lactogen (bPL), bPL(G133K) and bPL(G133R), were expressed in Escherichia coli, refolded, and purified to a native form. Binding experiments, which are likely to represent the binding to site 1 only, to intact FDC-P1 cells transfected with rabbit (rb) growth hormone receptor (GHR) or with human (h) GHR, to Nb2 rat lymphoma cells, or to rabbit mammary gland membranes prolactin receptor (PRLR), revealed only small or no reduction in binding capacity. The complex formation between these analogues and receptor extracellular domains (R-ECD) of various hormones was determined by gel filtration. Wild type bPL yielded 1:2 complex with hGHR-ECD, rat PRLR-ECD, and rbPRLR-ECD, whereas both analogues formed only 1:1 complexes with all R-ECDs tested. Real time kinetics experiments demonstrated that the ability of the analogues to form homodimeric complexes was compromised in both PRLR- and GHR-ECDs. The biological activity transduced through lactogenic receptors in in vitro bioassays in rabbit mammary gland acini culture and in Nb2 cells was almost fully retained, whereas the activity transduced through somatogenic receptors in FDC-P1 cells transfected with rbGHRs or with hGHRs was abolished. Both analogues exhibited antagonistic activity in the latter cells. To explain the discrepancy between the effect of the mutation on the signal transduced by PLR versus GHRs we suggest that: 1) the mutation impairs the ability of site 2 of bPL to form a stable homodimeric complex with both lactogenic and somatogenic receptors by a drastic shortening of the half-life of 2:1 complex; 2) the transient existence of the homodimeric complex is still sufficient to initiate the signal transduced through lactogenic receptors but not through somatogenic receptors; and 3) one possible reason for this difference is that JAK2, which serves as a mediator of both receptors, is already associated with lactogenic receptors prior to hormone binding-induced receptor dimerization, whereas in somatogenic receptors the JAK2 receptor association occurs subsequently to receptor dimerization.  相似文献   

18.
Prolactin stimulated ornithine decarboxylase activity in mammary gland explants from midpregnant mice. The enhanced enzyme activity occurred in explants which were preincubated for 1 day in medium containing insulin, hydrocortisone, insulin plus hydrocortisone, or in medium containing no hormones. The largest prolactin effect was observed in tissues which were pretreated with insulin plus hydrocortisone; a greater than ten-fold increase in ornithine decarboxylase activity was observed when these tissues were incubated with prolactin for 2 hours. An effect of prolactin on ornithine decarboxylase activity was also observed in explants prepared from lactating mouse mammary glands.  相似文献   

19.
20.
Insulin-like growth factor-I (IGF-I) induces neuronal differentiation in vitro. In the present study, we examined the signaling pathway underlying IGF-I-mediated neurite outgrowth. In SH-SY5Y human neuroblastoma cells, treatment with IGF-I induced concentration- and time-dependent tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and extracellular signal-regulated protein kinases (ERK) 1 and 2. These effects of IGF-I were blocked by a neutralizing antibody against IGF-IR. Whereas IGF-IR phosphorylation was observed within 1 min, maximal phosphorylation of ERKs was not reached for 30 min. Both IGF-IR and ERK phosphorylation were maintained for at least 24 h. Also, the concentration dependence of IGF-I-stimulated IGF-IR and ERK tyrosine phosphorylation paralleled that of IGF-I-mediated neurite outgrowth. We further examined the role of mitogen-activated protein kinase activation in IGF-I-stimulated neuronal differentiation using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059. Whereas PD98059 had no effect on IGF-IR phosphorylation, PD98059 reduced IGF-I-mediated ERK tyrosine phosphorylation and ERK phosphorylation of the substrate Elk-1. PD98059 also produced a parallel reduction of IGF-I-stimulated neurite outgrowth. Finally, consistent with its ability to block neuronal differentiation, PD98059 inhibited IGF-I-dependent changes of GAP-43 and c-myc gene expression. Together these results suggest that activation of ERKs is essential for IGF-I-stimulated neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号