首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
Translocations involving a breakpoint cluster region of the MLL gene at chromosome band 11q23 are the most common molecular abnormalities in acute leukemias of infants and acute leukemias related to chemotherapy with DNA topoisomerase II inhibitors. Molecular cloning of MLL genomic breakpoints by PCR has previously been difficult because MLL has many translocation partners and several breakpoints involve unknown partner genes. We review a new approach to MLL genomic breakpoint cloning called panhandle PCR. By adding an oligonucleotide sequence to the unknown 3' partner gene that is complementary to a known 5' MLL sequence, we have been able to generate a genomic template with an intrastrand loop for PCR schematically shaped like a pan with a handle. The intrastrand loop contains the translocation breakpoint and unknown partner DNA, while the handle contains the known 5' sequence from MLL and a complement to that sequence. Primers both derived from MLL are used to amplify the breakpoint by panhandle PCR. Panhandle PCR offers the advantage of having specificity for the strand of interest at both primer annealing sites without requiring specific primers for the many partner genes of MLL. Panhandle PCR is a straightforward method that represents a technical advance in MLL genomic breakpoint cloning.  相似文献   

3.
Gene rearrangements involving MLL (also known as ALL1, HRX, or Htrx) are among the most common molecular abnormalities associated with acute leukemia. These leukemias generally have one allele involved in a rearrangement, while the remaining allele is uninvolved and demonstrates a germline MLL configuration. In this study, we describe a leukemic cell line that does not have a germline MLL allele and thus cannot produce a normal MLL gene product. We show that the ML-1 cell line, derived from a patient with acute myeloid leukemia, has one allele involved in a t(6;11)(q27;q23), while the remaining MLL allele is deleted. Cloning of the genomic breakpoints on the derivative(6) and der(11) chromosomes demonstrated a balanced translocation between MLL on chromosome band 11q23 and AF6 on chromosome band 6q27. Sequence analysis of the derivative chromosomes revealed that a 186-bp segment of MLL intron 6, downstream of the breakpoint, had been duplicated, inverted, and inserted between MLL and AF6 on the der(11) chromosome. In light of the fact that ML-1 cells can be induced to differentiate along the granulocyte and macrophage lineages, the finding that ML-1 lacks a germline MLL allele demonstrates that a normal MLL gene is not required for survival, proliferation, or differentiation of this cell line.  相似文献   

4.
We used single-strand conformation polymorphism (SSCP) analysis of p53 exons 4-8 to screen for possible mutations in 25 pediatric de novo leukemias with translocations of the MLL gene at chromosome band 11q23. Of the 25 patients, 21 were infants. Fifteen cases were acute myeloid leukemia (AML), eight were acute lymphoblastic leukemia (ALL), and two cases were biphenotypic. Nineteen cases were studied at diagnosis and six at time of relapse. p53 mutations were absent in all 19 cases studied at the time of diagnosis. The only mutation was a TGC-->TTC transversion (cys-->phe) at codon 141 in exon 5 in a case of infant ALL at relapse that occurred by subclone evolution after MLL gene translocation. We previously showed that p53 mutations are also absent in pediatric treatment-related leukemias with MLL gene translocations. The absence of p53 mutations at initial transformation may suggest that the anti-apoptotic effect of mutant p53 is not important in leukemias with MLL gene translocations. Alternatively, exogenous DNA damage may be the common feature in treatment-related and de novo cases. Since MLL gene translocations may occur through DNA repair and wild-type p53 is central to DNA repair, the absence of p53 mutations raises the possibility that wild-type p53, not mutant p53, may be important in the genesis of leukemias with these translocations.  相似文献   

5.
The major established cause of acute myeloid leukemia (AML) in the young is cancer chemotherapy. There are two forms of treatment-related AML (t-AML). Each form has a de novo counterpart. Alkylating agents cause t-AML characterized by antecedent myelodysplasia, a mean latency period of 5-7 years and complete or partial deletion of chromosome 5 or 7. The risk is related to cumulative alkylating agent dose. Germline NF-1 and p53 gene mutations and the GSTT1 null genotype may increase the risk. Epipodophyllotoxins and other DNA topoisomerase II inhibitors cause leukemias with translocations of the MLL gene at chromosome band 11q23 or, less often, t(8;21), t(3;21), inv(16), t(8;16), t(15;17) or t(9;22). The mean latency period is about 2 years. While most cases are of French-American-British (FAB) M4 or FAB M5 morphology, other FAB AML subtypes, myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and chronic myelogenous leukemia (CML) occur. Between 2 and 12% of patients who receive epipodophyllotoxin have developed t-AML. There is no relationship with higher cumulative epipodophyllotoxin dose and genetic predisposition has not been identified, but weekly or twice-weekly schedules and preceding l-asparaginase administration may potentiate the risk. The translocation breakpoints in MLL are heterogeneously distributed within a breakpoint cluster region (bcr) and the MLL gene translocations involve one of many partner genes. DNA topoisomerase II cleavage assays demonstrate a correspondence between DNA topoisomerase II cleavage sites and the translocation breakpoints. DNA topoisomerase II catalyzes transient double-stranded DNA cleavage and rejoining. Epipodophyllotoxins form a complex with the DNA and DNA topoisomerase II, decrease DNA rejoining and cause chromosomal breakage. Furthermore, epipodophyllotoxin metabolism generates reactive oxygen species and hydroxyl radicals that could create abasic sites, potent position-specific enhancers of DNA topoisomerase II cleavage. One proposed mechanism for the translocations entails chromosomal breakage by DNA topoisomerase II and recombination of DNA free ends from different chromosomes through DNA repair. With few exceptions, treatment-related leukemias respond less well to either chemotherapy or bone marrow transplantation than their de novo counterparts, necessitating more innovative treatments, a better mechanistic understanding of the pathogenesis, and strategies for prevention.  相似文献   

6.
We have sequenced the breakpoint regions in one acute myeloid leukemia (AML) with t(16;21)(p11;q22) resulting in the formation of a FUS/ERG hybrid gene and in four myxoid liposarcomas (MLS), three of which had the translocation t(12;16) (q13;p11) and a FUS/CHOP fusion gene and one with t(12;22;20)(q13;q12;q11) and an EWS/CHOP hybrid gene. The breakpoints were localized to intron 7 of FUS, intron 1 of CHOP, an intronic sequence of ERG and intron 7 of EWS. In two MLS cases with t(12;16) and in the AML, the breaks in intron 7 of FUS had occurred close to each other, a few nucleotides downstream from a TG dinucleotide repeat region. The break in the two MLS had occurred in the same ATGGTG hexamer and in the AML 40 nucleotides upstream from the hexamer. The third case of t(12;16) MLS had a break upstream and near a TC-dinucleotide repeat region and a sequence similar to the chi bacterial recombination element was found to flank the breakpoint. In the MLS with the EWS/ CHOP hybrid gene, the break in intron 7 of EWS had occurred close to an Alu sequence. Similarly, in all 4 MLS, the breaks in intron 1 of CHOP were near an Alu sequence. No Alu or other repetitive sequences were found 250 bp upstream or downstream from the break in the ERG intron involved in the AML case. In the AML, the MLS with ESW/CHOP and in one MLS with FUS/CHOP there were one, two and six, respectively, nucleotide identity between the contributing germline sequences in the breakpoint. In the other two MLS cases, two and three extra nucleotides of unknown origin were inserted between the FUS and CHOP sequences. At the junction and/or in its close vicinity, identical oligomers, frequently containing a trinucleotide TGG, were found in both partner genes. Our data thus show that all four genes-FUS, EWS, CHOP and ERG-contain characteristic motifs in the breakpoint regions which may serve as specific recognition sites for DNA-binding proteins and have functional importance in the recombination events taking place between the chromosomes. Different sequence motifs may, however, play a role in each individual case.  相似文献   

7.
We examined clinical, morphologic, and cytogenetic features and ALL-1 (MLL, Htrxl, HRX) gene rearrangements in 17 cases of secondary leukemia that occurred 11 months to 9 years from diagnoses of primary cancers in children who received topoisomerase II inhibitors or developed secondary leukemias typical of those associated with this therapy. Primary diagnoses included nine solid tumors and eight leukemias. Ten secondary leukemias were acute myeloid leukemia (AML), one was of mixed lineage, two were acute lymphoblastic leukemia (ALL), and four presented as myelodysplasia. Of 15 cases with 11q23 involvement, 11 (73%) were cytogenetically identifiable; four cases had molecular rearrangement only. By Southern blot, rearrangements within the ALL-1 gene were similar to sporadic cases. The results of this analysis suggest the following: (1) In most pediatric cases of topoisomerase II inhibitor-associated leukemia, there is disruption of the breakpoint cluster region of the ALL-1 gene at chromosomal band 11q23. (2) Exposure histories vary in secondary 11q23 leukemia, as the only topoisomerase II inhibitor was dactinomycin in one case, and, in another case, no topoisomerase II inhibitor was administered. (3) There is clinical, morphologic, cytogenetic, and molecular heterogeneity in pediatric secondary 11q23 leukemia. (4) There are some survivors of pediatric secondary 11q23 leukemia, but the outcome is most often fatal.  相似文献   

8.
Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a polymorphism in the 5' promoter region of the CYP3A4 gene (CYP3A4-V) that might alter the metabolism of anticancer drugs. We examined 99 de novo and 30 treatment-related leukemias with a conformation-sensitive gel electrophoresis assay for the presence of the CYP3A4-V. In all treatment-related cases, there was prior exposure to one or more anticancer drugs metabolized by CYP3A. Nineteen of 99 de novo (19%) and 1 of 30 treatment-related (3%) leukemias carried the CYP3A4-V (P = 0.026; Fisher's Exact Test, FET). Nine of 42 de novo leukemias with MLL gene translocations (21%), and 0 of 22 treatment-related leukemias with MLL gene translocations carried the CYP3A4-V (P = 0. 016, FET). This relationship remained significant when 19 treatment-related leukemias with MLL gene translocations that followed epipodophyllotoxin exposure were compared with the same 42 de novo cases (P = 0.026, FET). These data suggest that individuals with CYP3A4-W genotype may be at increased risk for treatment-related leukemia and that epipodophyllotoxin metabolism by CYP3A4 may contribute to the secondary cancer risk. The CYP3A4-W genotype may increase production of potentially DNA-damaging reactive intermediates. The variant may decrease production of the epipodophyllotoxin catechol metabolite, which is the precursor of the potentially DNA-damaging quinone.  相似文献   

9.
10.
Translocations at chromosomal band 11q23 characterize most de novo acute lymphoblastic leukemias (ALL) of infants, acute myeloid leukemias (AML) of infants and young children, and secondary AMLs following epipodophyllotoxin exposure. The chromosomal breakpoints at 11q23 have been cloned from isolated cases of de novo ALL and AML. Using an 859-base pair BamHI fragment of human ALL-1 complementary DNA that recognizes the genomic breakpoint region for de novo ALL and AML, we investigated two cases of secondary AML that followed etoposide-treated primary B-lineage ALL. In the first case, the translocation occurred between chromosomes 9 and 11 and the breakpoint at 11q23 localized to the same 9-kilobase region of the ALL-1 gene that is disrupted in most of the de novo leukemias. In the second case the translocation was between chromosomes 11 and 19. The breakpoint occurred outside of the ALL-1 breakpoint cluster region.  相似文献   

11.
12.
13.
The human ALL-1/MLL/HRX gene on chromosome 11q23 is the site of many locally clustered chromosomal alterations associated with several types of acute leukemias, including deletions. partial duplications and reciprocal translocations. Structurally variant proteins derived from an altered ALL-1 gene presumably make essential contributions to the malignant transformation of hematopoietic progenitor cells. The ALL-1 gene is spread over approximately 92 kb and consists of at least 37 exons. An exon/intron map including the position of the 3'-end of the gene and a detailed restriction map were produced and an updated map is presented. Data from other laboratories were incorporated where compatible. Exon/intron boundaries were sequenced and an intron-phase analysis was performed. The results are expected to contribute to a better understanding of those structural alterations of the gene that conserve the open reading frame and produce presumably oncogenic variants of the ALL-1 protein. They will also facilitate the rapid molecular diagnosis of structural alterations of this gene and the choice of therapeutic options. Mechanisms that may potentially account for the striking clustering of the translocation breakpoints in the breakpoint cluster region of the gene are discussed.  相似文献   

14.
Centrocytic lymphoma (CC) and intermediately differentiated lymphocytic lymphoma (IDL) are B-cell non-Hodgkin's lymphomas composed of lymphocytes presumably derived from follicle mantle cells. In these lymphomas, a specific chromosomal translocation, t(11;14)(q13;q32), has been described. Previous studies suggested an association between t(11;14) chromosomal translocations and BCL-1 rearrangements. To evaluate the association between BCL-1 rearrangements and CC/IDL, Southern blot analysis was performed on a panel of 20 cases of CC/IDL, 22 cases of morphologically similar non-Hodgkin's lymphomas, 11 cases of chronic B-cell leukemias, and 2 cases of myelomas. We used various probes covering a considerable proportion of the 120-kilobase BCL-1 locus, and rearrangements in 50% of CC/IDL (10 of 20) were detected. In CC, all 4 breakpoints were located at the major translocation cluster (MTC). In contrast, in IDL, rearrangements were detected in 3 different cluster regions: 2 cases in the MTC, 2 cases with a breakpoint 24 kilobases outside the MTC, and 2 additional cases with breakpoints found 3 kilobases 5' of the first exon of the PRAD1/CCND1 gene, which is located 120 kilobases outside the MTC. In addition, one leukemia showed a breakpoint 63 kilobases outside the MTC. In all cases, there was comigration of the rearranged 11q13 fragment and the immunoglobulin heavy chain-joining gene complex, indicating a t(11;14)(q13;q32) chromosomal rearrangement. Our results show that Southern blot analysis is helpful to identify CC/IDL, but multiple breakpoints are present over a large region, and therefore, many probes are necessary to cover all breakpoints.  相似文献   

15.
We performed cloning and sequence analysis of translocation junctions at 11q- and 22q- (Ph1) chromosomes and the corresponding germline DNAs of a variant Ph1-positive CML with t(9;22;11)(q34;q11;q13). Southern blot analysis using probes for different regions of bcr mapped the translocation break near the 5'-side of bcr exon 4. Cloning, Southern blot analysis and restriction map analysis of both bcr fragments showed that the part of bcr 3'- to the translocation break moved to 11q13. Sequence analysis of the translocation junction on the Ph1 chromosome showed that the translocation break occurred 63 bp upstream of exon 4. Compared to the germline sequence, bcr sequence from the translocated partners showed deletion of seven basepairs at the site of translocation. A probe derived from the 5'-region of the clone isolated from the 11q- chromosome identified clonal rearrangements in the leukemic DNA. Restriction map and sequence analysis showed that this clone consisted of the 3'-half of the glutathione S-transferase Pi (GST-Pi) gene and the 3'-part of bcr. We identified two point mutations in the GST-Pi allele involved in translocation. Northern blot analysis showed that the GST-Pi gene was expressed in the leukemic cells at blast crisis but not at chronic phase; however, no fusion mRNA between GST-Pi and bcr was identified. We did not find any sequence homology between 11q13 DNA and 22q11 DNA around the translocation breakpoints; however, sequences homologous to ALU repeats were identified close to the sites of translocation breaks at 22q11 and 11q13. This study supports our hypothesis that variant Ph1 translocations may occur as primary cytogenetic changes similar to the classical Ph1 translocations.  相似文献   

16.
17.
Chromosome band 11q23 is frequently involved in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) de novo, as well as in myelodysplastic syndromes (MDS) and lymphoma. Five percent to 15% of patients treated with chemotherapy for a primary neoplasm develop therapy-related AML (t-AML) that may show rearrangements, usually translocations involving band 11q23 or, less often, 21q22. These leukemias develop after a relatively short latent period and often follow the use of drugs that inhibit the activity of DNA-topoisomerase II (topo II). We previously identified a gene, MLL (myeloid-lymphoid leukemia or mixed-lineage leukemia), at 11q23 that is involved in the de novo leukemias. We have studied 17 patients with t-MDS/t-AML, 12 of whom had cytogenetically detectable 11q23 rearrangements. Ten of the 12 t-AML patients had received topo II inhibitors and 9 of these, all with balanced translocations of 11q23, had MLL rearrangements on Southern blot analysis. None of the patients who had not received topo II inhibitors showed an MLL rearrangement. Of the 5 patients lacking 11q23 rearrangements, some of whom had monoblastic features, none had an MLL rearrangement, although 4 had received topo II inhibitors. Our study indicates that the MLL gene rearrangements are similar both in AML that develops de novo and in t-AML. The association of exposure to topo II-reactive chemotherapy with 11q23 rearrangements involving the MLL gene in t-AML suggests that topo II may play a role in the aberrant recombination events that occur in this region both in AML de novo and in t-AML.  相似文献   

18.
We analysed a complex translocation involving chromosomes 5, 6, 8 and 11 in a case of infant leukemia. Molecular analysis of the MLL gene revealed that MLL was fused with two different genes, AF-6 on chromosome 6q27 and AF-5alpha. AF-5alpha, the 11th partner gene fused with MLL, is a novel gene mapped to chromosome 5q12, which encodes a 31 kDa protein of 269 amino acids and contains a possible nuclear targeting sequence, a potential leucine zipper dimerization motif and an alpha-helical coiled-coil domain. In situ hybridization and molecular cloning analyses demonstrated that two different types of chromosomal recombination had occurred in the cells. One was a three-way translocation among chromosomes 6, 8 and 11, and the other was an insertion of a chromosome 5-derived segment into the breakpoint of chromosomes 8 and 11. Accordingly, the karyotype was defined as del(5)(q11.2q12), der(6)t(6;8) (q27;q11.2), der(8)(8pter-->8q11.2::5q11.2-->5q12::11q23-->++ +11qter), der(11)t(6;11) (q27;q23). Thus, the MLL gene created two different fusion mRNAs, since the chromosome 11 split into two different chromosomes 5 and 6. This is the first report demonstrating fusion of the MLL gene with two different genes by a complex translocation.  相似文献   

19.
20.
The inv(16) and related t(16;16) are found in 10% of all cases with de novo acute myeloid leukemia. In these rearrangements the core binding factor beta (CBFB) gene on 16q22 is fused to the smooth muscle myosin heavy chain gene (MYH11) on 16p13. To gain insight into the mechanisms causing the inv(16) we have analysed 24 genomic CBFB-MYH11 breakpoints. All breakpoints in CBFB are located in a 15-Kb intron. More than 50% of the sequenced 6.2 Kb of this intron consists of human repetitive elements. Twenty-one of the 24 breakpoints in MYH11 are located in a 370-bp intron. The remaining three breakpoints in MYH11 are located more upstream. The localization of three breakpoints adjacent to a V(D)J recombinase signal sequence in MYH11 suggests a V(D)J recombinase-mediated rearrangement in these cases. V(D)J recombinase-associated characteristics (small nucleotide deletions and insertions of random nucleotides) were detected in six other cases. CBFB and MYH11 duplications were detected in four of six cases tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号