首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various stages of immature human oocytes were imaged for microtubule, microfilament and chromatin organization. After germinal vesicle breakdown, a small microtubule aster was observed near the condensed chromatin. The asters appeared to elongate and encompass the condensed chromatin. At metaphase I stage, microtubules were detected in the meiotic spindle. The meiotic spindle in metaphase II was a symmetric, barrel-shaped structure containing anastral broad poles, located peripherally and radially oriented. After germinal vesicle breakdown, treatment with taxol induced numerous cytoplasmic foci of microtubules, mainly in the cortex of the oocyte. Microfilaments were observed as a relatively thick uniform area around the cell cortex and were also found near the germinal vesicle position. After germinal vesicle breakdown, the microfilaments were seen in both the cortex and around the female chromatin. In conclusion, this study suggests that both microtubules and microfilaments are closely associated with the reconstruction and proper positioning of chromatin after germinal vesicle breakdown and during meiotic maturation in human oocytes.  相似文献   

2.
The in vitro maturation rate of equine oocytes remains low, regardless of culture conditions. Our objective was to determine the reasons for failure of equine oocytes to resume meiosis during in vitro maturation and to ascertain the influence of the estrous cycle stage on meiotic competence. In 10 cyclic mares, 7 ultrasound-guided follicular punctures were performed alternately during the follicular phase (group DF; n = 3 punctures), at the end of the follicular phase (group EF; n = 2), and during the luteal phase (group DL; n = 2). We evaluated the competence of the oocytes for in vitro maturation and measured their maturation-promoting factor activity by histone H1 kinase assay. Puncturing once at the end of the follicular phase and once during the luteal phase, or three times during the follicular phase, yielded about 11 cumulus-oocyte complexes per 22 days. The maturation rate was different between the groups, 51% in group EF, 34% in group DL (p < 0.05), and 15% in group DF (p < 0.01), and it increased with an increase in follicular diameter (p < 0.05). After in vitro culture, the H1 kinase activity was lower in oocytes that remained in germinal vesicle or dense chromatin stages than in oocytes that reached metaphase I or metaphase II (p < 0.05). The H1 kinase activity was not different between oocytes in germinal vesicle stage after in vitro maturation and immature oocytes that were not cultured in vitro, and was higher in preovulatory oocytes that reached metaphase II in vivo than in the oocytes that reached metaphase II after in vitro maturation (p < 0.001). This is the first report on kinase activity in the equine oocyte.  相似文献   

3.
The distribution of three integrin subunits, alpha3, alpha5 and alpha(v), in immature and mature human oocytes has been examined using immunofluorescence and confocal microscopy. The results demonstrate that both alpha5 and alpha(v) are present at the germinal vesicle stage, while alpha3 was only detected in oocytes after germinal vesicle breakdown, in metaphase I and II stage oocytes. The cortical concentration of integrin subunits alpha3 and alpha5 is consistent with their localization in the oolemma. In contrast, the homogeneous distribution of alpha(v) throughout the oocyte suggests the existence of cytoplasmic reservoirs of this protein in the oocyte.  相似文献   

4.
Intracellular free calcium levels in starfish oocytes have been monitored during meiotic maturation and fertilization using calcium-sensitive fluorescent dyes combined with confocal laser scanning microscopy or fura ratioing techniques. In time-lapse analyses of prophase-arrested and maturing oocytes, calcium transients were elicited by inositol 1,4,5-trisphosphate (IP3), ryanodine, or caffeine, indicating that both the IP3-sensitive and IP3-insensitive receptors of the oocyte's calcium release channels could be stimulated to mobilize calcium ions. Fertilization also triggered a global calcium wave that appeared to travel faster around the cortex than through the center of the oocyte, and maturing oocytes developed normally after their fertilization-induced calcium waves had been imaged. Prophase-arrested specimens, on the other hand, did not undergo germinal vesicle breakdown or cleavage after displaying a fertilization-induced calcium transient throughout their cytoplasm and nucleus, confirming previous observations that calcium spikes are not sufficient to induce development in immature oocytes. In addition, although the calcium spikes triggered by sperm or caffeine reached similar normalized peak heights, fertilization-induced calcium waves in maturing oocytes tended to be more prolonged than the fertilization waves observed in prophase-arrested oocytes or the caffeine-triggered spikes elicited at any stage of maturation. Collectively, such findings suggest that the total amount of releasable calcium does not vary appreciably during maturation, but the patterns of the calcium transients can differ depending on the stage of maturation and/or the type of calcium-releasing agent. Possible artifacts affecting these findings are assessed, and the results are discussed relative to the functioning of calcium release pathways during starfish oocyte maturation and fertilization.  相似文献   

5.
Pig oocytes were examined to test their ability to undergo cortical granule exocytosis upon penetration by spermatozoa during meiotic maturation. Immature or maturing oocytes (cultured in vitro for 0 h, 26 h and 46 h) were inseminated with ejaculated boar spermatozoa in vitro. Before and after insemination, oocytes were stained with peanut agglutinin labelled with fluorescein isothiocyanate and the cortical granule distributions were examined under the fluorescent microscope and the laser confocal microscope. Before insemination, all the oocytes at the germinal vesicle stage showed a uniform distribution of cortical granules throughout the cortical cytoplasm. The granules migrated centrifugally during maturation and were distributed just beneath the oolemma in the oocytes after germinal vesicle breakdown, forming a monolayer in metaphase I or metaphase II. Cortical granules were still present in all penetrated oocytes at the germinal vesicle stage 18 h after insemination; in contrast, 26% and 84% of the oocytes inseminated at the stages of germinal vesicle breakdown or at metaphase I and II, respectively, completely released their cortical granules. Nuclear activation rates of penetrated oocytes were 0%, 38% and 96% in oocytes cultured for 0 h, 26 h and 46 h, respectively. Of the nuclear-activated oocytes, 67% (oocytes cultured for 26 h) and 88% (oocytes cultured for 46 h) released cortical granules completely. Complete cortical granule exocytosis was not observed in nuclear-inactivated oocytes. Of the nuclear-activated oocytes, 67% (oocytes cultured for 26 h) and 80% (oocytes cultured for 46 h) of monospermic oocytes and 67% (oocytes cultured for 26 h) and 91% (oocytes cultured for 46 h) of polyspermic oocytes released cortical granules, and no statistical difference was observed between oocytes cultured for 26 h or 46 h, or between monospermic and polyspermic oocytes. The proportion of oocytes with cortical granule exocytosis increased as insemination time increased and was greatest 18 h after insemination in oocytes cultured for 26 h and 46 h; no obvious changes were observed when the insemination time was prolonged to 24 h. These results indicate that pig oocytes develop the ability to release cortical granules after penetration by spermatozoa following germinal vesicle breakdown, and that this ability is not fully developed until metaphase II. Cortical granule exocytosis is accompanied by nuclear activation, suggesting that both nuclear and cytoplasmic maturation are responsible for the cortical reaction. Polyspermy may be a result of a complete failure of cortical granule exocytosis in immature oocytes and delayed CG exocytosis in matured oocytes.  相似文献   

6.
7.
Ovarian oocytes of the bivalve mollusc Ruditapes philippinarum are arrested during first meiotic prophase. Release from this blockade is triggered by the neurohormone serotonin (5HT or 5-hydroxytryptamine), which promotes germinal vesicle breakdown and drives these oocytes to a second arrest in metaphase I. 5HT action involves binding to a specific G protein-coupled receptor which results in a transient rise in IP3 and in the intracellular free Ca2+ concentration. Here we analyze the cytological effects and mode of action of the sulphydryl reagent thimerosal which could also trigger meiosis reinitiation in Ruditapes. No metaphase I spindle formed under these conditions since thimerosal was found to be able to preclude or reverse tubulin polymerization when applied to prophase- or to metaphase-arrested oocytes, respectively. Our results strongly suggest that the common final target for 5HT and thimerosal actions consists in a transient rise in internal free Ca2+ level that we could follow using Fluo3/AM as a probe. The effect of thimerosal in promoting oocyte maturation and increasing intracellular free Ca2+ concentration was improved by excess KCI. In addition, thimerosal, but not KCI, was found to facilitate 5HT-induced maturation at subthreshold hormone concentrations which, by themselves, did not produce an intracellular Ca2+ surge. These data suggest that thimerosal may inhibit Ca2+ pumps of the endoplasmic reticulum and unmask the plasma membrane voltage-sensitive Ca2+ channels which also appear after 5HT-induced GVBD.  相似文献   

8.
To elucidate the effects of ooplasmic factors on the early morphological changes in hamster sperm heads within the ooplasm, immature ovarian oocytes at the germinal vesicle stage (GV oocytes), ovulated fully mature oocytes, and fertilized eggs at anaphase II or the pronuclear stage (PN eggs) were examined in detail 15-30 min after insemination or reinsemination. Thin-sectioning studies demonstrated distinct materials released from the sperm nucleus over the entire postacrosomal nuclear surface immediately after disappearance of the sperm nuclear envelope. The release occurred in all of the oocytes and eggs prior to or even in the absence of subsequent chromatin decondensation. Depending upon the stage of the penetrated oocyte or egg, however, the materials varied in morphology: several hemispherical projections of amorphous material within mature oocytes; a number of electron-dense globules within GV oocytes and PN eggs; and both forms within eggs at anaphase II-telophase II. These observations and the fact that only the release of the amorphous material was accompanied by sperm chromatin decondensation indicate that this release was the initial process of chromatin decondensation, whereas the release of the globules resulted from a deficiency or lack of ooplasmic factors affecting the sperm nucleus. Restriction of the release in both forms of material to the late meiotic phase suggests changes in the factors associated with progression of meiosis. To approach an understanding of the mechanism of successful decondensation of sperm chromatin, the ooplasmic factors considered responsible for the stage-dependent release of nuclear materials are discussed.  相似文献   

9.
OBJECTIVE: To determine the efficiency of in vitro maturation, expressed by nuclear maturation, of oocytes aspirated during gynecologic surgeries or collected from excised ovaries. To assess the effect of patient age and cycle phase at collection on the oocyte's ability to mature in vitro. To examine the time course of oocyte maturation in vitro. DESIGN: Nuclear maturation based on patient criteria compared. SETTING: University-based IVF program and research center. PATIENT(S): Consented patients undergoing gynecologic surgeries or patients undergoing oophorectomy. INTERVENTION(S): Oocytes were maintained in culture for 48 hours and evaluated for maturation. MAIN OUTCOME MEASURE(S): Nuclear maturation evaluated as germinal vesicle breakdown (GVBD) or progression to the metaphase II (MII) stage. RESULT(S): A significantly higher percentage of oocytes collected during the follicular phase of the menstrual cycle underwent GVBD than did oocytes collected during the luteal phase (60% versus 48%, respectively). The percentage of oocytes reaching the MII stage, from these two groups, was not different. No statistically significant differences in maturation were observed in oocytes from different ovarian sources or from patients >40 or <40 years of age. CONCLUSION(S): These data suggest that oocytes collected during the follicular phase are more likely to undergo GVBD than oocytes collected during the luteal phase. In this study, ovarian source, age, or cycle phase did not influence the final meiotic maturation of oocytes to metaphase II.  相似文献   

10.
We have used the whole-cell recording technique to compare three stages of primary and secondary oocytes from F1 hybrid mice (C57BL/6J x SJL/J): neonatal germinal vesicle (NGV) stage primary oocytes from 10- to 20-day-old, prepubescent mice; mature germinal vesicle (MGV) stage primary oocytes from 12-week-old, post-pubescent, superovulated mice; first polar body (FPB) stage secondary oocytes from 12-week-old, post-pubescent mice during the normal oestrus cycle or following superovulation. NGV, MGV and FPB oocytes all exhibit two voltage-dependent currents: an inward, rapidly activating/inactivating current, and an outward, slowly activating/non-inactivating current. In 1.5 mmol/l external Ca the average peak inward current is -2.9, -12.4 and -13.8 microA/cm2 in NGV, MGV and FPB oocytes, respectively. In 20 mmol/l Ca these currents increase and the reversal potential shifts to the right. The outward current decreases slightly with growth and development: at 40 mV test potentials, NGV oocytes have average outward currents of 8.9 microA/cm2, and MGV and FPB oocytes have currents of 5.0 and 5.5 microA/cm2, respectively. Thus, MGV oocytes express FPB current patterns. The reversal potentials, kinetics and pharmacology of the currents indicate that Ca channels carry the inward current and K channels carry the outward current. During growth in vivo a gradual depolarisation accompanies maturation. Resting potentials ranged from -45 to -30 mV in NGV oocytes to -35 to -17 mV in MGV oocytes to -20 mV to -3 mV in FPB oocytes. These data suggest that a selective increase occurs in the number of Ca channels during oocyte growth. This increase precedes nuclear maturation and coincides with the acquisition of meiotic competence.  相似文献   

11.
To study the mechanisms involved in the progression of meiotic maturation in the mouse, we used oocytes from two strains of mice, CBA/Kw and KE, which differ greatly in the rate at which they undergo meiotic maturation. CBA/Kw oocytes extrude the first polar body about 7 hours after breakdown of the germinal vesicle (GVBD), whilst the oocytes from KE mice take approximately 3-4 hours longer. In both strains, the kinetics of spindle formation are comparable. While the kinetics of MAP kinase activity are very similar in both strains (although slightly faster in CBA/Kw), the rise of cdc2 kinase activity is very rapid in CBA/Kw oocytes and slow and diphasic in KE oocytes. When protein synthesis is inhibited, the activity of the cdc2 kinase starts to rise but arrests shortly after GVBD with a slightly higher level in CBA/Kw oocytes, which may correspond to the presence of a larger pool of cyclin B1 in prophase CBA/Kw oocytes. After GVBD, the rate of cyclin B1 synthesis is higher in CBA/Kw than in KE oocytes, whilst the overall level of protein synthesis and the amount of messenger RNA coding for cyclin B1 are identical in oocytes from both strains. The injection of cyclin B1 messenger RNA in KE oocytes increased the H1 kinase activity and sped up first polar body extrusion. Finally, analysis of the rate of maturation in hybrids obtained after fusion of nuclear and cytoplasmic fragments of oocytes from both strains suggests that both the germinal vesicle and the cytoplasm contain factor(s) influencing the length of the first meiotic M phase. These results demonstrate that the rate of cyclin B1 synthesis controls the length of the first meiotic M phase and that a nuclear factor able to speed up cyclin B synthesis is present in CBA/Kw oocytes.  相似文献   

12.
Oocyte maturation is finally triggered by the maturation-promoting factor (MPF), which consists of Cdc2 and cyclin B. We have cloned cDNAs encoding frog (Rana japonica) cyclins B1 and B2 and produced antibodies against their products. Using the antibodies, we investigated changes in protein states and levels of Cdc2 and cyclins B1 and B2 during oocyte maturation. In immature oocytes, all Cdc2 was a monomeric unphosphorylated inactive 35 kDa form and neither cyclin B1 nor cyclin B2 was present. Mature oocytes contained the MPF complex consisting of an active 34 kDa Cdc2 phosphorylated on threonine161 and a 49 kDa cyclin B1 or a 51 kDa cyclin B2. After progesterone stimulation, both cyclins B1 and B2 were synthesized from their stored mRNAs and bound to the preexisting 35 kDa Cdc2. The binding of Cdc2 with cyclin B and its activation probably through the phosphorylation on threonine161 occurred at almost the same time, in accordance with an electrophoretic mobility shift of Cdc2 from 35 to 34 kDa. Microinjection into immature oocytes of cyclin B1 or B2 mRNA alone, or a mixture of them, induced germinal vesicle breakdown (GVBD) with similar dose-dependence. When the translation of endogenous mRNAs of both cyclins B1 and B2 was inhibited with antisense RNAs, progesterone failed to induce GVBD in the oocytes, but the inhibition of only one of the two was unable to inhibit the progesterone-induced GVBD. These results indicate that either cyclin B1 or B2 is necessary and sufficient for inducing GVBD during Rana oocyte maturation.  相似文献   

13.
The cytoskeletal components of hamster oocytes, zygotes, and spontaneously activated parthogenotes were examined after immunocytochemical labeling. Microtubules were found only in the anastral, tangentially arranged second meiotic spindle of unfertilized oocytes. Taxol treatment of unfertilized oocytes greatly augmented astral microtubules in both the metaphase II spindle and the cortex. Disruption of the meiotic spindle microtubules with nocodazole resulted in cortical chromosomal scattering. During hamster sperm incorporation and pronuclear formation, no sperm aster was detected in association with the male DNA. Instead, a large overlapping array of microtubules assembled in the cortex. By mitosis, this interphase array disassembled and an anastral metaphase spindle formed. Microtubule and chromatin configurations were also imaged in hamster oocytes injected with human sperm. Astral microtubules were absent from the sperm centrosome. The implications of these results are discussed in relation to the hamster oocyte penetration assay, a test commonly used by in vitro fertilization clinics to demonstrate the fertilizing ability of human sperm. We conclude that since hamsters and humans follow different methods of centrosome inheritance, maternal and paternal, respectively, the hamster may be an inappropriate model for exploring microtubule and centrosomal defects in humans or for assaying postinsemination forms of human male fertility defects.  相似文献   

14.
The objectives were to describe the ultrastructure of equine oocytes aspirated from small and preovulatory follicles, and to relate the ultrastructural features to follicle size and follicular fluid steroid concentrations. Mares were examined every second day by transrectal ultrasonography, and follicles measuring > 30 mm were aspirated (in vivo) using a 20-cm-long 12-gauge needle through the flank. Following slaughter, both large and small follicles were aspirated (in vitro) from six mares. The oocytes were isolated under a stereomicroscope and processed for transmission electron microscopy, and the follicular fluid was assayed for progesterone (P4) amd estradiol-17 beta (E2). A total of 29 oocytes (32% recovery rate) were aspirated in vivo, and 15 oocytes were recovered in vitro. According to the stage of nuclear maturation, the oocytes could be divided into the following six categories: 1) the central oocyte nucleus (CON) stage, 2) the peripheral spherical oocyte nucleus (PON-I) stage, 3) the peripheral flattened oocyte nucleus (PON-II) stage, 4) the oocyte nucleus breakdown (ONBD) stage, 5) the metaphase I (M-I) stage, and 6) the metaphase II (M-II) stage. The maturation of the preovulatory follicle was reflected by alterations in the follicular fluid concentrations of steroid hormones. E2 was high in all preovulatory follicles, whereas P4 concentration exhibited a 10-fold increase during follicle maturation, particularly associated with the progression from M-I- to M-II-stage oocytes. The nuclear oocyte maturation included flattening of the spherical oocyte nucleus, followed by increasing undulation of the nuclear envelope, formation of the metaphase plate of the first meiotic division, and, finally, the extrusion of the first polar body and the subsequent formation of the metaphase plate of the second meiotic division. The cytoplasmic oocyte maturation changes comprised breakdown of the intermediate junctions between the cumulus cell projections and the oolemma, enlargement of the perivitelline space, the formation and arrangement of a large number of cortical granules immediately beneath the oolemma, the rearrangement of mitochondria from a predominantly peripheral distribution to a more central or semilunar domain, and the rearrangement of membrane-bound vesicles and lipid droplets from an even distribution to an often semilunar domain, giving the ooplasm a polarized appearance. It is concluded that the final equine oocyte maturation includes a series of well-defined nuclear and cytoplasmic changes that are paralleled by an increase in P4 concentration in the follicular fluid, whereas E2 concentration remains constantly high.  相似文献   

15.
Although no chromosomal DNA replication actually occurs during Xenopus oocyte maturation, the capability develops during the late meiosis I (MI) phase in response to progesterone. This ability, however, is suppressed by Mos proteins and maturation/mitosis promoting factor during the second meiosis phase (meiosis II; MII) until fertilization. Inhibition of RNA synthesis by actinomycin D during early MI prevented induction of the replication ability, but did not interfere with initiation of the meiotic cell cycle progression characterized by oscillation of the maturation/mitosis promoting factor activity and germinal vesicle breakdown. Microinjection of recombinant proteins such as dominant-negative E2F or universal Cdk inhibitors, p21 and p27, but not wild type human E2F-1 or Cdk4-specific inhibitor, p19, into maturing oocytes during MI abolished induction of the DNA replication ability. Co-injection of human E2F-1 and cyclin E proteins into immature oocytes allowed them to initiate DNA replication even in the absence of progesterone treatment. Injection of cyclin E alone, which was sufficient to activate endogenous Cdk2 kinase, failed to induce DNA replication. Moreover, the activation of Cdk2 was not affected under the conditions where DNA replication was blocked by actinomycin D. Thus, like somatic cells, both activities of E2F and cyclin E-Cdk2 complex are required for induction of the DNA replication ability in maturing Xenopus oocytes, and enhancement of both activities enables oocytes to override DNA-replication inhibitory mechanisms that specifically lie in maturing oocytes.  相似文献   

16.
Surface characteristics of the bovine oocyte and its investments before, during, and after maturation, and fertilization in vitro were evaluated by scanning electron microscopy (SEM). Oocyte diameters were also measured during SEM analysis of the oocyte. The cumulus cells manifested a compact structure with minimal intercellular spaces among them in the immature oocytes. These became fully expanded with increased intercellular spaces after maturation in vitro, but contracted again after fertilization. The zona pellucida (ZP) showed a fibrous, open mesh-like structure in the maturing and matured oocytes. The size and number of meshes on the ZP decreased dramatically after fertilization. The vitelline surface of immature oocytes was characterized by distribution of tongue-shaped protrusions (TSPs) varying in density. After 10 and 22 hr of maturation incubation, oocyte surface microvilli (MV) increased to become the predominant surface structure, and TSPs decreased substantially. The vitelline surface of fertilized oocytes (at 6 and 20 hr) was similar to that of the matured oocytes, but unfertilized oocytes had less dense MV than did fertilized oocytes (at 20 hr). The diameter of the oocytes decreased from 99 to 80 microns during maturation and increased to 106 microns after insemination (P < 0.05). Membrane maturation was characterized by surface changes from a TSP-predominant pattern to a MV-predominant pattern. Thus, the bovine oocyte maturation process was found to involve the expansion of cumulus cells and the maturation of the ZP, which changes dramatically upon fertilization. Also, volumetric changes occurred in ooplasm processed for SEM following oocyte maturation and insemination.  相似文献   

17.
To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome-cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.  相似文献   

18.
In almost all animal species, immature oocytes are arrested naturally in the first meiotic prophase, with a large nucleus called the germinal vesicle. A number of previous studies showed that both activation of maturation/M phase-promoting factor (MPF) (assayed by semiquantitative cytological methods) and some other maturational events occur essentially normally in enucleated oocytes from many amphibian species and mice. Hence, for nearly three decades, it has generally been believed that nuclear material is dispensable for MPF activation and the meiotic cell cycle in vertebrate oocytes. Here, we have challenged this view by examining the histone H1 kinase activities and the molecular forms of MPF in experimentally manipulated Xenopus oocytes. We show that oocytes injected with nuclear material undergo much more rapid MPF activation and maturation than uninjected control oocytes. Conversely, enucleated oocytes, unlike nucleated counterparts, undergo only weak MPF activation in meiosis I and no detectable MPF reactivation in meiosis II, the latter accompanying inhibitory tyrosine phosphorylation of cdc2 kinase, the catalytic subunit of MPF. These results argue strongly that nuclear material is indispensable for the meiotic cell cycle, particularly MPF reactivation (or cdc2 tyrosine dephosphorylation) on entry into meiosis II, in Xenopus oocytes. The classical and general view may thus need reconsideration.  相似文献   

19.
The two main body axes in Drosophila become polarised as a result of a series of symmetry-breaking steps during oogenesis. Two of the sixteen germline cells in each egg chamber develop as pro-oocytes, and the first asymmetry arises when one of these cells is selected to become the oocyte. Anterior-posterior polarity originates when the oocyte then comes to lie posterior to the nurse cells and signals through the Gurken/Egfr pathway to induce the adjacent follicle cells to adopt a posterior fate. This directs the movement of the germinal vesicle and associated gurken mRNA from the posterior to an anterior corner of the oocyte, where Gurken protein signals for a second time to induce the dorsal follicle cells, thereby polarising the dorsal-ventral axis. Here we describe a group of five genes, the spindle loci, which are required for each of these polarising events. spindle mutants inhibit the induction of both the posterior and dorsal follicle cells by disrupting the localisation and translation of gurken mRNA. Moreover, the oocyte often fails to reach the posterior of mutant egg chambers and differentiates abnormally. Finally, double mutants cause both pro-oocytes to develop as oocytes, by delaying the choice between these two cells. Thus, these mutants reveal a novel link between oocyte selection, oocyte positioning and axis formation in Drosophila, leading us to propose that the spindle genes act in a process that is common to several of these events.  相似文献   

20.
Maturation-promoting factor (MPF) is known to be a key regulator of both mitotic and meiotic cell cycles. MPF is a complex of a B cyclin and the cyclin-dependent kinase cdkl (p34cdc2). Oocyte maturation and its arrest at metaphase of meiosis II (MII) are regulated by changes in MPF activity. In this study, experiments were conducted to examine the dynamics of MPF activity and its constituent proteins during in vitro maturation of bovine oocytes. Bovine oocytes displayed relatively low levels of MPF (histone H1 kinase) activity at the germinal vesicle stage during the first 8 h of maturation. MPF activity increased gradually thereafter, and its first peak of activity occurred at 12-14 h of maturation (presumptive metaphase I), which was followed by an abrupt reduction in activity at 16-18 h, during presumptive anaphase and telophase. MPF activity then increased, reaching a plateau at 20-24 h of maturation (MII stage). This high level of MPF activity was maintained for several hours but decreased gradually after 30 h of maturation and became barely detectable by 48 h of in vitro maturation (IVM) culture. At each time point, there was a significant variation among individual oocytes in histone H1 kinase activity, which was probably due to asynchronous maturation. Abundance of cdk1 increased gradually during the first 8 h and then remained relatively constant except for an apparent reduction at 18-22 h of IVM. The level of cyclin B2 increased quickly during the initial 2 h of culture, and this high level was maintained until 16 h, after which a significant reduction was observed between 18 and 22 h of IVM. The de novo synthesis of cyclin B2, however, exhibited a biphasic oscillation during maturation, with peaks before the onset of MI and of MII. These results have defined the profiles of MPF activity and its individual components during bovine oocyte maturation in vitro. We conclude that active MPF regulates bovine oocyte maturation and that de novo synthesis of cyclin B2 occurs during the process of maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号