首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Modeling PWM DC/DC converters out of basic converter units   总被引:4,自引:0,他引:4  
An alternative approach to modeling pulsewidth-modulated (PWM) DC/DC converters out of basic converter units (BCUs) is presented in this paper. Typical PWM DC/DC converters include the well-known buck, boost, buck-boost, Cuk, Zeta, and Sepic. With proper reconfiguration, these converters can be represented in terms of either buck or boost converter and linear devices, thus, the buck and boost converters are named BCUs. The PWM converters are, consequently, categorized into buck and boost families. With this categorization, the small-signal models of these converters are readily derived in terms of h parameter (for buck family) and g parameter (for boost family). Using the proposed approach, not only can one find a general configuration for converters in a family, but one can yield the same small-signal models as those derived from the direct state-space averaging method. Additionally, modeling of quasi-resonant converters and multiresonant converters can be simplified when adopting the proposed approach  相似文献   

2.
A systematic approach to developing soft switching PWM converters based on the synchronous switch scheme is presented in this paper. With the approach, several families of passive and active soft switching PWM converters, such as buck-boost, Zeta, Cuk, and Sepic, can be generated from the two basic converters, buck and boost. Also, the approach is used to integrate multiple converters to form a single-stage soft switching PWM converter. It has been shown that analysis of the converters can be conveniently performed from the derived general configurations, reducing the complexity significantly. Therefore, employing the technique can not only explore more physical insights into the converters in a family but reveal more relationships among the soft switching converters over conventional approaches. Measured results from a prototype have verified the feasibility of the derived single-stage converters  相似文献   

3.
A systematic and unified approach to modeling pulsewidth modulated (PWM) DC/DC converters based on the graft scheme is presented in this paper. With the graft scheme, the typical PWM switch-mode converters, such as buck-boost, boost-buck (Cuk), Sepic, and dual Sepic, can be generated from the two basic converters, buck and boost. The small signal models of these converters can, therefore, be derived by properly combining those of the buck and boost. Using the proposed approach can help to yield highly related dynamic models of the converters in a family and, in addition, physical insights into the converters can be readily identified. This has made the proposed modeling method valuable and viable  相似文献   

4.
A passive lossless snubber cell is proposed to improve the turn-on and turnoff transients of the MOSFETs in nonisolated pulsewidth modulated (PWM) DC/DC converters. Switching losses and EMI noise are reduced by restricting di/dt of the reverse-recovery current and dv/dt of the drain-source voltage. The MOSFET operates at zero-voltage-switching (ZVS) turnoff and near zero-current-switching (ZCS) turn-on. The freewheeling diode is also commutated under ZVS. As an example, operation principles, theoretical analysis, relevant equations, and experimental results of a boost converter equipped with the proposed snubber cell are presented in detail. Efficiency of 96% has also been measured in the experimental results reported for a 1 kW 100 kHz prototype in the laboratory, Six basic nonisolated PWM DC/DC converters (buck, boost, buck-boost, Cuk, Sepic, and Zeta) equipped with the proposed general snubber cells are also shown in this paper  相似文献   

5.
Two new members of the family of switched mode converters employing tapped inductors are identified. The input to output voltage ratio for buck, boost and buck-boost converters with all possible tapping arrangements are analysed in terms of the tap position and switch duty cycle. Practical test results for the new converters are presented  相似文献   

6.
几种新型的Buck—Boost变换器的合成   总被引:1,自引:0,他引:1  
从传输机制说明单管升降压变换器(如Buck-Boost、SPEIC、Cuk)中元件承受的电压和电流应力高的原因,并根据这一机制,采用变换器合成的方式,提出了一系列的双管Buck-Boost变换器。这类变换器根据输入输出条件,可以分别工作于Boost模式和Buck模式,起到降低元件应力的作用。  相似文献   

7.
Soft switching active snubbers for DC/DC converters   总被引:9,自引:0,他引:9  
A soft-switching active snubber is proposed to reduce the turn-off losses of the insulated gate bipolar transistor (IGBT) in a buck power converter. The soft-switching snubber provides zero-voltage switching for the IGBT, thereby reducing its high turn-off losses due to the current tailing. The proposed snubber uses an auxiliary switch to discharge the snubber capacitor. This auxiliary switch also operates at zero-voltage and zero-current switching. The size of the auxiliary switch compared to the main switch makes this snubber a good alternative to the conventional snubber or even to passive low-loss snubbers. The use of the soft-switching active snubber permits the IGBT to operate at high frequencies with an improved RBSOA. In the experimental results reported for a 1 kW, 40 kHz prototype, combined switching/snubbing losses are reduced by 36% through the use of the active snubber compared to a conventional RCD snubber. The use of an active snubber allows recovery of part of the energy stored in the snubber capacitor during turn-off. The generic snubber cell for the buck power converter is generalized to support the common nonisolated DC/DC power converters (buck, boost, buck-boost, Cuk, sepic, zeta) as well as isolated DC/DC power converters (forward, flyback, Cuk, and sepic)  相似文献   

8.
This paper introduces novel zero-current-switching (ZCS) pulsewidth-modulated (PWM) preregulators based on a new soft-commutation cell, suitable for insulated gate bipolar transistor applications. The active switches in these proposed rectifiers turn on in zero current and turn off in zero current-zero voltage. In addition, the diodes turn on in zero voltage and their reverse-recovery effects over the active switches are negligible. Moreover, based on the proposed cell, an entire family of DC-to-DC ZCS-PWM converters can be generated, providing conditions to obtain naturally isolated converters, for example, derived buck-boost, Sepic and Zeta converters. The novel AC-to-DC ZCS-PWM boost and Zeta preregulators are presented in order to verify the operation of this soft-commutation cell. In order to minimize the harmonic contents of the input current, increasing the AC power factor the average-current-mode control is used, obtaining preregulators with AC power factor near unity and high efficiency at wide load range. The principle of operation, theoretical analysis, design example, and experimental results from test units for the novel preregulators are presented. The new boost preregulator was designed to nominal values of 1.6 kW output power, 220 Vrms input voltage, 400 Vdc output voltage, and operating at 20 kHz. The measured efficiency and power factor of the new ZCS-PWM boost preregulator were 96.7% and 0.99, respectively, with an input current total harmonic distortion (THD) equal to 3.42% for an input voltage with THD equal to 1.61%, at rated load  相似文献   

9.
A general and unified large signal averaged circuit model for current programmed DC-to-DC converters is proposed. In the averaged circuit model, the active switch is modeled by a current source, with its value equal to the averaged current flowing through it, and the diode is modeled hy the voltage source, with its value equal to the averaged voltage across it. The averaged circuit model has the same topology as the switching converter. The large signal averaged circuit model for current programmed buck, boost, buck-boost and Cuk converters are proposed, from which the large signal characteristics can be obtained. The steady-state and small signal transfer functions of the current programmed DC-to-DC converters can all be derived from their large signal averaged circuit models. The large signal characteristics of the current programmed buck converter are studied by both the phase plane trajectory and the time domain analysis. Experimental prototypes for a current programmed buck converter, with and without an input filter, are breadboarded to verify the analysis  相似文献   

10.
An analytical procedure to optimize the feedforward compensation for any PWM DC/DC power converters is described. Achieving zero DC audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feedforward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized  相似文献   

11.
In this paper, we propose to study the use of several zero-current-switched (ZCS) quasi-resonant converters (QRCs) (buck-boost, flyback, SEPIC, Cuk, boost, and buck) with a half-wave switch, working as power factor preregulators (PFPs) with voltage-follower control. The analysis carried out demonstrates that these converters show excellent characteristics to obtain a high power factor (PF) without using any input-current feedback loop, and they also allow high switching frequency to operate because they integrate transformer and rectifier diode parasitics into the power topology  相似文献   

12.
All parasitics such as switch conduction voltages, conduction resistances, switching times, and ESRs of capacitors are counted in a proposed DC-DC power convertor state-space modeling based method on nonideal switching functions. An equivalent simplified model is derived from the complex circuit with parasitics. The modeling procedure is shown for the buck-boost converter as the general converter among the buck, boost, and buck-boost converters. The pole frequency, DC voltage gain, and efficiency are analyzed and verified by experiments that show good agreement with theory. The procedures for determining the gain margin of the controller, the turn ratio of an isolation transformer, the optimum duty factor, and the switching frequency are given for an example flyback converter  相似文献   

13.
Simple topologies of PWM AC-AC converters   总被引:2,自引:0,他引:2  
This letter proposes a new family of simple topologies of PWM AC-AC converters with minimal switches. With extension from the basic DC-DC converters, a series of AC-AC converters such as buck, boost, buck-boost, Cuk, and isolated converters are obtained. By PWM duty ratio control, they become a "solid-state transformer" with a continuously variable turns ratio. All the proposed AC-AC converters in this paper employ only two switches. Compared to the existing circuits that use six switches or more, they can reduce cost and improve reliability. The operating principle and control method of the proposed topologies are presented. Analysis and simulation results are given using the Cuk AC-AC converter as an example. The analysis can be easily extended to other converters of the proposed family.  相似文献   

14.
Large-signal dynamic models for hysteretic current-programmed buck, boost, and buck-boost converters are proposed. The model is expressed by a single differential equation. The small-signal transfer functions of these three converters are also derived, based on the large-signal model. The analysis shows that under the hysteretic current-programmed control, the output voltage of the buck converter is independent of the supply voltage, and there is a right-halfplane (RHP) zero in the control-to-output transfer function of boost and buck-boost converters. An experimental prototype is breadboarded to verify the analysis  相似文献   

15.
The control strategy of the DC-to-DC switching converters is studied to obtain the switching regulators with zero-voltage regulation. A novel control strategy, the function control, is presented for the DC-to-DC switching converters to achieve this objective. The control law and the corresponding feedback are derived directly from the equations governing the switching converters. With the function control strategy presented in the paper, the switching regulators become robust, i.e., the output is independent of the disturbances from either the supply voltage or the load and exhibits other desirable advantages. The strategy is applicable to all the four basic PWM converters, i.e., buck, boost, buck-boost, and Cuk. The analysis is confirmed by experiments and computer simulations  相似文献   

16.
DC-DC converters under current-mode control have been known to exhibit slow-scale oscillation as a result of a Hopf-type bifurcation as one or more of the parameters of the outer voltage loop are varied. In the absence of the outer voltage loop (i.e., open loop), slow-scale oscillation was generally not observed in simple low-order dc-dc converters, i.e., buck, buck-boost, and boost converters. In this paper, slow-scale bifurcation in a higher order current-mode controlled converter is studied. It has been found experimentally that, even in the absence of a closed outer voltage loop, a current-mode controlled Cuk converter can exhibit a slow-scale Hopf-type bifurcation. The phenomenon was observed in a commercial low-ripple dc-dc converter which has been designed using the Cuk converter and the LM2611 controller. Such slow-scale oscillation of the inner current loop can also be observed in full-circuit SPICE simulations. An averaged model has been developed and implemented in SPICE to find the Hopf bifurcation boundaries. With this averaged model, the Hopf bifurcation can be explained conveniently using the traditional loop gain analysis. Specifically, the extra degrees of freedom in higher order dc-dc converters have opened up a new possible mode of instability which has not been found in simple low-order dc-dc converters.  相似文献   

17.
The state-plane analysis for the buck, boost, buck/boost, and Cuk zero-current-switching resonant DC/DC power converters is presented. Simple visual criteria are introduced to determine whether the converter is operating in a mode producing voltage conversion. It is shown that the voltage conversion takes place within the converters if and only if both horizontal and vertical straight-line segments are present in the state-plane graph. The boundary of energy conversion is identified from the state plane by the evaporation of one or both straight-line segments. Formulas are found for the normalized switching frequency at this boundary that depend on the value of normalized switching voltage  相似文献   

18.
用开关电容网络改善DC-DC变换器性能的研究   总被引:4,自引:1,他引:4  
程红丽 《微电子学》1999,29(5):322-326
将串并电容组合结构,极性反转开关电容网络和推挽开关电容网络和buck,boost,Cuk及buck-boost等传统DC-DC变换器相结合,构成一系列新的变换器拓扑结构。理论分析和实验结果秀助于提高具有悬殊电压变化比的DC-DC变换器的工作频率和动态响应,还能拓宽变换器的电压变换范围。  相似文献   

19.
A resonant switch is introduced that uses linear tank elements. Zero-current switching is obtained even through the peak transistor voltage and current stresses can approach those of an equivalent ideal pulsewidth-modulated converter. Reduced switching loss without a substantial increase in conduction loss is therefore possible. An approximate analysis is outlined, and transistor peak-voltage and current stresses are shown to be much lower than those of linear resonant switch technologies. Single-transistor implementations of the buck, boost, and buck-boost nonlinear resonant switch converters are given. Results are presented which experimentally prove the validity of the nonlinear resonant switch concept, as well as that of the approximate analysis  相似文献   

20.
With the advent of battery-powered portable devices and mandatory adoption of power factor correction, noninverting buck-boost converters are garnering lots of attention. Conventional two-switch or four-switch noninverting buck-boost converters choose their operation modes by measuring input and output voltage magnitude. The criterion for the selection of the operation mode can cause higher output voltage transients in the neighborhood, where input and output are close to each other. For the mode selection, due to the voltage drops raised by the parasitic components, it is not enough just to compare the magnitude of input and output voltages. In addition, the difference in the minimum and maximum effective duty cycles between controller output and switching device yields discontinuity at the instant of mode change. Moreover, the different properties of output voltage versus a given duty cycle of buck and boost operating modes contribute to the output voltage transients. In this paper, the effect of the discontinuity due to the effective duty cycle derived from the device switching time at the mode change is analyzed. A technique to compensate the output voltage transient due to this discontinuity is proposed. In order to attain additional mitigation of output transients and a linear input/output voltage characteristic in buck and boost modes, the linearization of DC gain of the large-signal model in boost operation is analyzed as well. Analytical, simulation, and experimental results are presented to validate the proposed theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号