首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the development and characterization of a label-less immunosensor for myelin basic protein (MBP) and its interrogation using an ac impedance protocol. Commercial screen-printed carbon electrodes were used as the basis for the sensor. Polyaniline was electrodeposited onto the sensors, and this modified surface then utilized to immobilize a biotinylated antibody for MBP using a classical avidin-biotin approach. Electrodes containing the antibodies were exposed to solutions of MBP and interrogated using an ac impedance protocol. The real component of the impedance of the electrodes was found to increase with increasing concentration of antigen. Control samples containing a nonspecific IgG antibody were also studied, and calibration curves were obtained by subtraction of the responses for specific and nonspecific antibody-based sensors, thereby accounting for and eliminating the effects of nonspecific adsorption of MBP. A logarithmic relationship between the concentration of MBP in buffer solutions and the impedimetric response was observed.  相似文献   

2.
Poly(dimethylsiloxane) (PDMS) appeared recently as a material of choice for rapid and accurate replication of polymer-based microfluidic networks. However, due to its hydrophobicity, the surface strongly interacts with apolar analytes or species containing apolar domains, resulting in significant uncontrolled adsorption on channel walls. This contribution describes the application and characterization of a PDMS surface treatment that considerably decreases adsorption of low and high molecular mass substances to channel walls while maintaining a modest cathodic electroosmotic flow. Channels are modified with a three-layer biotin-neutravidin sandwich coating, made of biotinylated IgG, neutravidin, and biotinylated dextran. By replacing biotinylated dextran with any biotinylated reagent, the modified surface can be readily patterned with biochemical probes, such as antibodies. Combination of probe immobilization chemistry with low nonspecific binding enables affinity binding assays within channel networks. The example of an electrokinetic driven, heterogeneous immunoreaction for human IgG is described.  相似文献   

3.
Disposable magnetic DNA sensors using an enzyme-amplified strategy for the specific detection of a gene related to the Enterobacteriaceae bacterial family, based on the coupling of streptavidin-peroxidase to biotinylated lacZ gene target sequences, has been developed. A biotinylated 25-mer capture probe was attached to streptavidin-modified magnetic beads and hybridization with the biotinylated target was allowed to proceed. Then, a streptavidin-peroxidase polymer was attached to the biotinylated target, and the resulting modified magnetic beads were captured by a magnetic field on the surface of tetrathiafulvalene (TTF) modified gold screen-printed electrodes (Au/SPEs). The amperometric response obtained at -0.15 V after the addition of hydrogen peroxide was used to detect the hybridization process. In order to improve the sensitivity of the determination and reduce the assay time, different variables of the assay protocol were optimized. A low detection limit (5.7 fmol) with good stability (RSD = 7.1%, n = 10) was obtained. The DNA nonspecific adsorption at the magnetic beads was negligible, the obtained results thus demonstrating the possibility to detect the hybridization event with great specificity and sensitivity. The developed method was used for the analysis of Escherichia coli DNA fragments (326 bases) in polymerase chain reaction (PCR) amplicons extracted from a cell culture. As low as 2.5 aM asymmetric PCR product could be detected with the developed methodology.  相似文献   

4.
Chen HY  Lahann J 《Analytical chemistry》2005,77(21):6909-6914
In this report, we introduce a surface modification method for the fabrication of discontinuous surface patterns within microfluidic systems. The method is based on chemical vapor deposition (CVD) of a photodefinable coating, poly(4-benzoyl-p-xylylene-co-p-xylylene), onto the luminal surface of a microfluidic device followed by a photopatterning step to initiate spatially controlled surface binding. During photopatterning, light-reactive groups of the CVD polymer spontaneously react with molecules adjunct to the surface, such as poly(ethylene oxide). We demonstrate the potential of these reactive polymers for surface modification by preventing nonspecific protein adsorption on different substrates including silicon and poly(dimethylsiloxane) as measured by fluorescence microscopy. More importantly, three-dimensional patterns have successfully been created within polymer-based microfluidic channels, establishing spatially controlled, bioinert surfaces. The herein reported surface modification method addresses a critical challenge with respect to surface engineering of microfluidic devices, namely, the fabrication of discontinuous patterns within microchannels.  相似文献   

5.
A photoactivable organic polymer was prepared first by electrogeneration of a conductive biotinylated polypyrrole film in acetonitrile electrolyte. The successive anchoring of avidin and photobiotin led to a multilayer configuration. The latter was illuminated with light (wavelength 370–400 nm) in the presence of proteins adsorbed onto its surface. The irradiation allowed the covalent linking of the proteins to the modified electrode. As a result of the photochemical reaction, a monolayer of enzyme (glucose oxidase, GOX or alkaline phosphatase, AP) was covalently bound to the photobiotin-modified surface with retention of their catalytic activities. The surfacic activities were 34 and 1.69 mU cm 2 for GOX and AP photobiotin electrodes, respectively. These enzyme electrodes were compared to similar configurations obtained through the immobilization of biotinylated glucose oxidase or avidin-conjugated alkaline phosphatase on biotinylated polypyrrole film. Our results suggest that both procedures led to the immobilization of the same enzyme amount, namely a protein monolayer. This novel photo-immobilization methodology was also successfully applied to the anchoring of an anti-cholera toxin antibody which was then detected by a secondary antibody labelled with a peroxidase.  相似文献   

6.
A comparison of cyclic voltammograms of dodecanethiol (DDT) capped Au nanoclusters (5.0 0.5 nm) and trisodium citrate (Cit) capped Au nanoclusters (approximately 10-15 nm) modified glassy carbon electrode shows a dramatic variation in the current when exposed to a small amount of sulphur dioxide. This is explained using the electrocatalytic properties of Au nanoclusters towards the oxidation of SO2, thus facilitating the fabrication of electrochemical sensors for the detection of SO2. The intrinsic redox changes observed for gold nanocluster-modified glassy carbon electrodes disappear on passing SO2, despite a dramatic current increase, which indeed scales up with the amount of dissolved SO2. Interestingly, a complete rejuvenation of the redox behavior of gold is also observed on subsequent removal of SO2 from the solution by passing pure nitrogen for 15 minutes. Further, these nanoclusters when characterized with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) after SO2 passage reveal a variety of SO2 adsorption modes on gold surface. XP spectra also show a shift of 1.03 eV towards higher binding energy indicating a strong adsorption of SO2 gas, while FTIR gives conclusive evidence for the interaction of SO2 with gold nanoparticles.  相似文献   

7.
A new biotin derivative functionalized by an electropolymerizable pyrrole group has been synthesized. The electrooxidation of this biotin pyrrole has allowed the formation of biotinylated conducting polypyrrole films in organic electrolyte. Gravimetric measurements based on a quartz crystal microbalance, modified by the biotinylated polymer, revealed an avidin-biotin-specific binding at the interface of polymer-solution. The estimated mass increase corresponded to the anchoring of 1.5 avidin monolayers on the polypyrrole surface. In addition, the subsequent grafting of biotinylated glucose oxidase was corroborated by electrochemical permeation studies. Enzyme multilayers composed of glucose oxidase or polyphenol oxidase were elaborated on the electrode surface modified by the biotinylated polypyrrole film. The amperometric response of the resulting biosensors to glucose or catechol has been studied at +0.6 or -0.2 V vs SCE, respectively.  相似文献   

8.
Lu C  Xie Y  Yang Y  Cheng MM  Koh CG  Bai Y  Lee LJ  Juang YJ 《Analytical chemistry》2007,79(3):994-1001
Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.  相似文献   

9.
The electrooxidation of a biotin pyrrole has allowed the formation of biotinylated polypyrrole films. Gravimetric measurements based on a quartz crystal microbalance demonstrate the efficient coupling of avidin, biotinylated polyphenol oxidase (PPO-B) and avidin-labeled alkaline phosphatase (AP-A) with the underlying biotinylated polymer film. The estimated mass increase corresponds to the anchoring of 1.6-1.8 equivalent layer of proteins. A step-by-step construction of bienzyme multilayers composed of PPO-B and AP-A was carried out on the electrode surface modified by the biotinylated polypyrrole film through avidin-biotin bridges. A spatially controlled distribution of the two enzymes was performed by the formation of one AP-A layer on 1, 5, and 10 PPO-B layers. The resulting bienzyme electrodes were applied to the determination of phenyl phosphate on the basis of amperometric detection of enzymically generated o-quinone at -0.2 V. Their analytical performances were analyzed in relation to the design of the enzyme architectures and in comparison with the amperometric behavior of the monoenzymatic electrodes (PPO-B electrode and AP-A electrode). It appears that at the 10-layer-PPO-B polypyrrole electrode only 4% of phenol is transformed, whereas 42-69% of phenyl phosphate is enzymatically consumed and detected at the AP-A polypyrrole electrode, depending on the enzyme activity. For the bienzymatic AP-A/PPO-B polypyrrole electrodes, the activity of each immobilized enzyme clearly affects the biosensor performance, the main limiting factor being the very low efficiency of PPO-B at pH 8.8.  相似文献   

10.
11.
A comparison of the binding properties of avidin, streptavidin, neutrAvidin, and antibiotin antibody to a biotinylated lipid bilayer was studied using second-harmonic generation. Protein binding assays were performed on a planar supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) containing 4 mol?% biotinylated-cap-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (biotin-cap-DOPE). The equilibrium binding affinities of these biotin-protein interactions were determined, revealing the relative energetic contributions for each protein to the biotinylated lipid ligand. The results show that the binding affinities of avidin, streptavidin, and neutrAvidin for biotin were all strengthened by protein-protein interactions but that the stronger protein-protein interactions observed for streptavidin and neutrAvidin make their binding more energetically favorable. It was also shown that neutrAvidin has the highest degree of nonspecific adsorption to a pure DOPC bilayer, compared to avidin and streptavidin. In addition, the biotin-binding affinity of the antibiotin antibody was found to be of the same order of magnitude as that of avidin, streptavidin, and neutrAvidin. These findings provide important new insights into these biotin-bound protein complexes commonly used in several bioanalytical applications.  相似文献   

12.
We present a unique microfluidic platform to allow for quick and sensitive probing of protein adsorption to various functionalized surfaces. The ability to tailor a sensor surface for a specific analyte is crucial for the successful application of portable gas and fluid sensors and is of great interest to the drug screening community. However, choosing the correct surface chemistry to successfully passivate against nonspecific binding typically requires repeated trial and error experiments. The presented device incorporates an array of integrated electrochemical sensors for fast, sensitive, label-free detection of these binding interactions. The layout of the electrodes allows for loading various surface chemistries in one direction while sensing their interactions with particular compounds in another without any cross-contamination. Impedance data is collected for three commonly used passivation compounds (mercaptohexanol, polyethylene glycol, and bovine serum albumin) and demonstrates their interaction with three commonly studied proteins in genetic and cancer research (cAMP receptor protein, tumor necrosis factor α, and tumor necrosis factor β). The ability to quickly characterize various surface interactions provides knowledge for selecting optimal functionalization for any biosensor.  相似文献   

13.
Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar‐induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue–electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long‐term stability. Herein, a low‐temperature microimprint‐lithography technique for the development of micro‐topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4‐ethylenedioxythiophene):p‐toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro‐topographically modified neural interfaces in the development of stable microelectrode interfaces.  相似文献   

14.
In this work, robust approach for a highly sensitive point-of-care virus detection was established based on immunomagnetic nanobeads and fluorescent quantum dots (QDs). Taking advantage of immunomagnetic nanobeads functionalized with the monoclonal antibody (mAb) to the surface protein hemagglutinin (HA) of avian influenza virus (AIV) H9N2 subtype, H9N2 viruses were efficiently captured through antibody affinity binding, without pretreatment of samples. The capture kinetics could be fitted well with a first-order bimolecular reaction with a high capturing rate constant k(f) of 4.25 × 10(9) (mol/L)(-1) s(-1), which suggested that the viruses could be quickly captured by the well-dispersed and comparable-size immunomagnetic nanobeads. In order to improve the sensitivity, high-luminance QDs conjugated with streptavidin (QDs-SA) were introduced to this assay through the high affinity biotin-streptavidin system by using the biotinylated mAb in an immuno sandwich mode. We ensured the selective binding of QDs-SA to the available biotin-sites on biotinylated mAb and optimized the conditions to reduce the nonspecific adsorption of QDs-SA to get a limit of detection low up to 60 copies of viruses in 200 μL. This approach is robust for application at the point-of-care due to its very good specificity, precision, and reproducibility with an intra-assay variability of 1.35% and an interassay variability of 3.0%, as well as its high selectivity also demonstrated by analysis of synthetic biological samples with mashed tissues and feces. Moreover, this method has been validated through a double-blind trial with 30 throat swab samples with a coincidence of 96.7% with the expected results.  相似文献   

15.
We demonstrate a strategy for microfabricating catalytically active, three-dimensional matrixes composed of cross-linked protein in cellular and microfluidic environments. In this approach, a pulsed femtosecond laser is used to excite photosensitizers via multiphoton absorption within three-dimensionally defined volumes, a process that promotes cross-linking of protein residue side chains in the vicinity of the laser focal point. In this manner, it is possible to fabricate protein microparticles with dimensions on the order of the multiphoton focal volume (less than 1 microm(3)) or, by scanning the position of a laser focal point relative to a specimen, to generate surface-adherent matrixes or cables that extend through solution for hundreds of micrometers. We show that protein matrixes can be functionalized either through direct cross-linking of enzymes, by decoration of avidin matrixes with biotinylated enzymes, or by cross-linking biotinylated proteins that then are linked to biotinylated enzymes via an avidin couple. Several formats are explored, including microparticles that can be translocated to desired sites of action (including cytosolic positions), protein pads that generate product gradients within cell cultures, and on-column nanoreactors for microfluidic systems. These biomaterial fabrication technologies offer opportunities for studying a variety of cell functions, ranging from single-cell biochemistry and development to perturbation and analysis of small populations of cultured cells.  相似文献   

16.
Kwon MJ  Lee J  Wark AW  Lee HJ 《Analytical chemistry》2012,84(3):1702-1707
The application of biofunctionalized nanoparticles possessing various shapes and sizes for the enhanced surface plasmon resonance (SPR) detection of a protein biomarker at attomolar concentrations is described. Three different gold nanoparticle shapes (cubic cages, rods and quasi-spherical) with each possessing at least one dimension in the 40-50 nm range were systematically compared. Each nanoparticle (NP) was covalently functionalized with an antibody (anti-thrombin) and used as part of a sandwich assay in conjunction with a Au SPR chip modified with a DNA-aptamer probe specific to thrombin. The concentration of each NP-antibody conjugate solution was first optimized prior to establishing that the quasi-spherical nanoparticles resulted in the greatest enhancement in sensitivity with the detection of thrombin at concentrations as low as 1 aM. When nanorod and nanocage antibody conjugates were instead used, the minimum target concentrations detected were 10 aM (rods) and 1 fM (cages). This is a significant improvement (>10(3)) on previous NP-enhanced SPR studies utilizing smaller (~15 nm) gold NP conjugates and is attributed to the functionalization of both the NP and chip surfaces resulting in low nonspecific adsorption as well as a combination of density increases and plasmonic coupling inducing large shifts in the local refractive index at the chip surface upon nanoparticle adsorption.  相似文献   

17.
The quest for a spin‐polarized organic light‐emitting diode (spin‐OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device, two ferromagnetic (FM) electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds a few volts, while spin injection in organic materials is only efficient at low voltages. The fabrication of a spin‐OLED that uses a conjugated polymer as bipolar spin collector layer and ferromagnetic electrodes is reported here. Through a careful engineering of the organic/inorganic interfaces, it is succeeded in obtaining a light‐emitting device showing spin‐valve effects at high voltages (up to 14 V). This allows the detection of a magneto‐electroluminescence (MEL) enhancement on the order of a 2.4% at 9 V for the antiparallel (AP) configuration of the magnetic electrodes. This observation provides evidence for the long‐standing fundamental issue of injecting spins from magnetic electrodes into the frontier levels of a molecular semiconductor. The finding opens the way for the design of multifunctional devices coupling the light and the spin degrees of freedom.  相似文献   

18.
Immobilization of the protein streptavidin to the surface of polymethyl methacrylate (PMMA) polymer was studied by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Different protocols were used to attach streptavidin to the PMMA surface: physical adsorption and chemical coupling. The influence of oxygen plasma treatment on the efficiency of streptavidin binding was studied. The presence of streptavidin coating on the PMMA surface was demonstrated by the appearance of N1s signal in the XPS spectra of coated PMMA samples. The XPS results have shown that oxygen plasma treatment improves binding of streptavidin to the PMMA surface. XPS results also showed that chemical coupling is more efficient than physical adsorption. In the case of physical adsorption, rinsing of the sample with water caused noticeable decrease of nitrogen concentration, while in the case of chemical coupling the nitrogen concentration was stable. AFM measurements showed that after deposition of streptavidin coating the originally smooth surface changed to dendrite structure.  相似文献   

19.
Techniques currently employed to evaluate biomolecular interactions on surfaces require the use of radiolabeled, enzymatic, or fluorescent-tags to record and report the binding event. Ellipsometry has proven to be a powerful tool in understanding the biomolecular interactions on solid substrates and, typically does not require the labeling of the ligand or the receptor. In this present study, the adsorption kinetics of Human Serum Albumin (HSA) on functionalized silicon surfaces were evaluated using in-situ ellipsometry. In-situ ellipsometry was used to estimate the thickness of the adsorbed layers and the adsorption and desorption kinetics of HSA on functionalized surfaces. In this study, dense, self assembled monolayers were fabricated using aminopropyltriethoxysilane (APTES) and mixed silanes using APTES and methyltriethoxysilane at a ratio of 1:10, to serve as a template for protein immobilization on silicon surfaces. The silane derivatized surfaces were further modified using three different ligands/receptors that have been reported to bind HSA, namely: a linear peptide, a polyclonal antibody against human serum albumin, and small synthetic ligand (2, 4, 6-Tris(dimethylaminomethyl)phenol. The amount of HSA adsorbed was observed to increase with time, and with the initial concentration of the HSA solution. The adsorption kinetics of HSA on functionalized surfaces was approximated by a simple model for protein adsorption. A good model fit was obtained for the experimental data, thus enabling the interpretation of the adsorption kinetics of HSA on functionalized silicon surfaces. The effect of different HSA binding ligands on the rate constants affecting protein adsorption and desorption were studied.  相似文献   

20.
A sensor system for the herbicide 2,4-dichlorophenoxy-acetic acid has been developed based on specific recognition of the analyte by a molecularly imprinted polymer and electrochemical detection using disposable screen-printed electrodes. The method involves a competitive binding step with a nonrelated electrochemically active probe. For batch binding assays, imprinted polymer particles are incubated in suspension with the analyte and the probe, followed by centrifugation and quantification of the unbound probe in the supernatant. Two different compounds, namely 2,4-dichlorophenol and homogentisic acid, were tested as potential electroactive probes. Both compounds could be conveniently detected by differential-pulse voltammetry on screen-printed, solvent-resistant three-electrode systems having carbon working electrodes. Whereas 2,4-dichlorophenol showed very high nonspecific binding to the polymer, homogentisic acid bound specifically to the imprinted sites and thus allowed calibration curves for the analyte in the micromolar range to be recorded. An integrated sensor was developed by coating the imprinted polymer particles directly onto the working electrode. Following incubation of the modified electrode in a solution containing the analyte and the probe, the bound fraction of the probe is quantified. This system provides a cheap, disposable sensor for rapid determination of environmentally relevant and other analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号