首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 397 毫秒
1.
采用高分子絮凝剂(聚合氯化铝、两种阳离子聚丙烯酰胺)对抚顺桑德水务有限公司海城污水处理厂污泥浓缩池剩余污泥进行絮凝实验,通过对污泥沉降性能的测定,利用污泥沉降比、污泥浓度、悬浮物、泥饼含水率及上清液CODcr和氨氮实验表征絮凝剂效果,最后得出800万分子量的阳离子聚丙烯酰胺可达到经济实惠、效果可观的目标,其最佳用量为0.06 g/100 m L。  相似文献   

2.
研究了表面活性剂TTAB、聚合氯化铝、阳离子聚丙烯酰胺对污泥脱水性能的影响,实验结果表明,它们都有助于改善污泥的脱水性能,表面活性剂TTAB、PAC和CPAM的投加量为0.28 g/L、4.5 g/L和90 mg/L时,污泥的沉降性能和脱水性能分别达到最佳,经表面活性剂调理后的污泥滤饼含水率可以达到70.33%,较PAC和CPAM调理的污泥脱水程度大幅提升,此外,还初步探讨了表面活性剂对污泥的作用机理,研究结果表明,表面活性剂主要通过分散污泥絮体的结构释放污泥絮体内部的结合水和溶出EPS来改善污泥的脱水性能。  相似文献   

3.
开展了不同工艺条件的热水解预处理对污泥有机物溶出规律的影响研究。结果表明,预脱水污泥经过热水解处理后,可溶性化学需氧量(SCOD)、可溶性蛋白和氨氮等指标的含量明显升高,在200℃/40min条件下,均达到最大值,分别为33895mg/L、19285mg/L和2228mg/L;可溶性多糖含量随反应温度的升高呈现先增后减的趋势,在170℃/40min条件下达到最大值3724mg/L;此时,可溶性蛋白与多糖之和在SCOD中的占比达到71.5%;在190℃/40min条件下,挥发性脂肪酸(VFAs)含量达到最大,相比预脱水污泥提升了300%。热水解有效改善了污泥厌氧消化效性。  相似文献   

4.
采用厌氧/好氧/缺氧模式运行的SBR工艺处理模拟城市污水,考察外加碳源乙酸钠和污泥水解酸化上清液对其脱氮除磷效果的影响。模拟城市污水,进水水质COD为400 mg/L、氨氮为60 mg/L、磷酸盐为7 mg/L。结果表明:不投加碳源时,系统对COD、氨氮、磷酸盐的去除率分别为90%、91%、82%;乙酸钠投加量为60 mg/L的条件下,外加乙酸钠系统对COD、氨氮、磷酸盐的去除率分别为93%、100%、100%,磷的去除主要是通过好氧聚磷作用;上清液投加量折合进水COD为30 mg/L时,外加污泥水解酸化上清液系统对COD、氨氮、磷酸盐的去除率分别为97%、99%、95%,系统中出现明显的反硝化除磷现象,反硝化除磷占24%。  相似文献   

5.
超声波联合高分子絮凝剂对污泥的调理研究   总被引:1,自引:0,他引:1  
试验以毛细吸水时间(CST)和离心后污泥含水率作为污泥脱水性能指标,探讨了超声波与高分子絮凝剂阳离子瓜尔胶(CGG)及聚丙烯酰胺(PAM)联合作用对污泥脱水性的影响。结果表明,单独超声波调理污泥,当超声频率为20 Hz,功率为60 W时,最佳作用时间为20 s;超声波与CGG联合调理污泥,当CGG投加量为900 mg/L时,CST由原污泥的470 s降低到76 s,污泥离心含水率由原污泥的88.3%降低到75.3%;超声波与CGG+PAM联合调理污泥,当CGG和PAM投加量分别为300、120 mg/L时,CST和污泥离心含水率均明显降低,分别降低到18 s和58.8%。  相似文献   

6.
电镀污泥含重金属,具环境毒性,被列为危险废物。火法冶炼回收重金属如铜镍等,是目前经济和技术条件下的重要的污泥处理手段。在污泥入窑冶炼前,若能以较低的成本和能耗降低污泥含水率,干化,能大幅降低冶炼成本。生产实践中,将高含水率污泥制浆,调理泥浆,再泵送进高压/超高压程控隔膜压滤机压滤压榨后得干化污泥,最后压滤水和废气净化处理排放,这是一条经济节约的技术路线。上述电镀污泥减量的工艺路线,难点在于污泥的包装去除、除杂和制浆,该文就此提出了可行的技术路径。  相似文献   

7.
邱明海 《净水技术》2020,39(1):29-33
重庆市珞璜污泥热干化工程一期规模为600 t/d(含水率为80%),干化厂厂址位于重庆华能珞璜电厂厂区内。污泥处置工艺采用半干化+热电厂掺烧,干燥机设备选用圆盘式干化设备,污泥干化程度由含水率80%降至含水率30%左右。干污泥送至热电厂按照一定比例与煤掺烧,干化需要的热源采用电厂提供的蒸汽。污泥干化过程中产生的高温高浓度臭气由引风机送至热电厂锅炉焚烧除臭,低温低浓度臭气采用生物滤池除臭;污泥干化过程中产生的冷凝废水经预处理后送至珞璜工业园区污水处理厂,处理后达标排放。本工程实现了污泥处理处置的稳定化、无害化和资源化。  相似文献   

8.
<正> 在污水处理过程中随着污水的净化、沉淀下大量污泥,一般初次沉淀池的污泥含水率为95%左右,生物滤池后的二次沉淀池的污泥含水率为96%左左,活性污泥的含水率则高达99%以上。由于含水率大,污泥量多,给污泥的处理和利用带来一定的困难,因而需要浓缩、脱水或干化,以减少污泥体积。例如含水率为95%的污泥经脱水后含水率降到70%时,污泥重量仅为脱水前的16.7%;如果含水率为99.5%的污泥经浓缩和脱水后含水率降到70%时,污泥重量仅为脱水前的1.67%。  相似文献   

9.
污水污泥动态间壁热干燥特性及工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
王兴润  金宜英  杜欣  聂永丰 《化工学报》2007,58(9):2211-2215
建立了序批式动态污泥间壁热干燥实验平台,并借此研究了干燥温度对干燥效率、干污泥热值、干污泥有机物含量(VS)、干燥冷凝水有机物含量(TOC)的影响;研究了水分蒸发速率与含水率的关系。结果表明:干燥温度低于160℃,水分蒸发速率较慢,干燥效率较低;干燥温度高于180℃,污泥絮体和微生物细胞发生破坏,水分存在形态发生改变,干燥效率提高较大,干污泥热值降低以及干燥冷凝水TOC浓度增加。干燥冷凝水属高浓度有机废水,须处理达标后才能排放。  相似文献   

10.
项目采用低温热泵干化耦合热电厂掺烧方式处理生活污水处理厂污泥,处理规模达300 t/d(含水率60%计)。干化后污泥能由含水率51.20%降至2.92%,干化过程中恶臭气体经处理后符合相关排放标准。比较了10%~30%干污泥与燃煤混合掺烧对焚烧炉运行的影响,发现在该范围内锅炉均能保持良好的性能。项目以20%的污泥掺杂量与燃煤掺烧,对烟气排放物、灰渣进行检测发现各项指标经过处理后能够达标排放。  相似文献   

11.
高浓度氨氮对活性污泥性能的影响   总被引:4,自引:0,他引:4  
采用2个SBR反应器RUN1和RUN2在氨氮质量浓度分别为50、350 mg/L的条件下驯化污泥,考察氨氮浓度对污泥活性的影响;并在氨氮质量浓度分别为59、232、368、604和1 152 mg/L的条件下对2个反应器中的驯化污泥进行氨氮适应性试验。结果表明:在较高的氨氮浓度条件下,有机物降解菌对CODCr降解率下降约47%,硝化菌对氨氮的去除率下降约55%,脱氢酶活性下降约56.6%,显示出高浓度氨氮对有机物降解菌和硝化菌的活性都具有一定的抑制作用;当进水氨氮质量浓度从59 mg/L升至1 152 mg/L时,RUN1和RUN2中污泥对CODCr的去除率分别由89.2%和91.9%下降为40.5%和67.6%,对氨氮的去除率则分别由99.8%和99.9%下降为17.1%和22.2%,说明经高浓度氨氮驯化的污泥,其有机物降解菌和硝化菌都显示出对高浓度氨氮更好的适应性。  相似文献   

12.
在以葡萄糖为基质长期运行的厌氧膨胀颗粒污泥床(EGSB)反应器里,研究了氨氮对EGSB反应器处理高浓度有机废水的影响。结果表明,在进水COD的质量浓度为7000mg/L,有机负荷为48 kg[COD]/(m3.d),水力停留时间为3.5h,回流比为12,水力上升流速为3.38 m/h的条件下,当氨氮的质量浓度小于200mg/L时,对厌氧反应器中的微生物有刺激作用;当氨氮的质量浓度在200~500mg/L时,氨氮浓度的增加对微生物无不利影响,反应器趋于稳定状态,COD去除率为96%左右;当氨氮的质量浓度在500~2000mg/L时,氨氮浓度的变化会对微生物产生短暂的抑制作用,但经过短期的驯化之后即可恢复到原来的状态,此阶段系统运行不稳定;氨氮的质量浓度大于2000mg/L时,则有明显的抑制作用;氨氮的质量浓度达到2736mg/L时,产气量降为47.59L/d,为初始产气量的一半,挥发性有机酸的质量浓度急剧升高至265mg/L,系统出现明显的酸化现象。整个试验过程中,碱度、pH值以及SS随着氨氮浓度的增加稍有增加,但pH值变化不大,基本维持在6.8~7.5。  相似文献   

13.
为了研究溶解氧变化对生物滤柱中氨氮、铁、锰去除效果的影响,将进水溶解氧从约10.5mg/L逐步降到7mg/L,本文考察了氨氮、铁、锰的变化规律。结果表明:当溶解氧为约10.5mg/L时,出水氨氮、总铁、锰分别为0.050mg/L、0.065mg/L、0.022mg/L,氨氮、铁、锰分别主要在滤层的0~1.2m、0~0.4m、0~1.2m去除。当溶解氧降到约9mg/L、8mg/L、7mg/L时,出水总铁均低于0.1mg/L;出水锰先明显升高,后又降到了0.05mg/L以下;出水氨氮分别升高到0.17mg/L、0.41mg/L、0.61mg/L。溶解氧不足时,铁主要在溶解氧充足的上部滤层去除;锰氧化菌优先利用溶解氧氧化二价锰,并且锰的氧化速率没有明显降低;氨氮的氧化速率明显降低。生物滤柱可以在较低溶解氧条件下运行,从而降低运行成本。  相似文献   

14.
旨在将生产工业磷酸一铵(MAP)产生的磷淤渣中的硫、镁和磷高效分离利用,同时去除杂质离子。通过对磷淤渣进行酸浸、脱氟、冷却结晶、除杂和氨化等制备硫酸铵镁和硫基磷铵。研究表明,当酸浸液脱氟后加入氨水调节pH至0.85时,经冷却结晶硫酸铵镁的产率可达62%;在冷却结晶硫酸铵镁后的滤液中加入氨水调节pH至2.6,滤液中的杂质三氧化二铁(Fe2O3)、氧化铝(Al2O3)、氧化镁(MgO)质量分数分别降低至0.08%、0.58%、0.93%,向除杂后的滤液中通入氨气并控制pH=9,经浓缩、干燥可得到硫基磷铵,硫基磷铵的总氮质量分数≥16%、有效磷质量分数≥26%、总硫质量分数≥11%、水溶性磷占有效磷质量分数≥75%以上。通过这种途径实现磷淤渣的高效利用更加绿色环保。  相似文献   

15.
在上流式污泥床好氧颗粒污泥反应器中,以厌氧颗粒污泥为接种泥.采用人工配制的模拟废水为进水的条件下,成功培养出具有同步脱氮除磷的好氧颗粒污泥。颗粒污泥粒径在0.5~2mm,颗粒污泥沉淀速度在29~58m/h。MLSS为3077---4103mg/L。当COD的进水容积负荷为4.8kg/(m3·d)时,去除率高达96%以上。氨氮进水在160mg/L时,去除率达97%以上,出水氨氮在5mg/L以下。对总磷的去除率在22%-37%。主要是因为亚硝态氮浓度、COD/TN比和TN/TP比等对聚磷菌除磷有影响。  相似文献   

16.
聚季铵盐调理污泥深度脱水过程与中试效能   总被引:1,自引:0,他引:1       下载免费PDF全文
王子文  曹蓉  杨艳坤  朱引  王硕  李激 《化工进展》2019,38(7):3458-3464
采用聚季铵盐[P(DM-AM)]取代传统化学调理剂聚丙烯酰胺(polyacrylamide,PAM),通过分析污泥脱水性能、胞外聚合物含量以及抽滤液水质指标,验证P(DM-AM)作为污泥调理剂的效果。结果表明,P(DM-AM)作为阳离子型高分子絮凝剂能够提高污泥的脱水性能,在最适投加量为0.4%~0.5%(按污泥干固量计算)时,毛细吸水时间(capillary absorption time,CST)和污泥比阻(specific resistance of sludge,SRF)分别下降48%和40%,污泥热值可达2686cal/g(1cal=4.18J)。当P(DM-AM)协同生石灰(CaO)和氯化铁(FeCl3)作为调理剂调理污泥时,处理后的污泥水分去除率可升高55%左右,与污泥紧密结合型胞外聚合物(tightly bound-EPS,TB-EPS)中的多糖含量降低了74%,且污泥中Cl-浓度约为92.3mg/gDS,较采用PAM调理的污泥下降约6%,可缓解污泥焚烧对焚烧炉腐蚀的影响。同时,P(DM-AM)调理污泥后,其抽滤液化学需氧量(chemical oxygen demand,COD)由2120mg/L降低至1941.8mg/L,可有效减轻污水处理厂运行负担。  相似文献   

17.
针对污泥经电渗透技术深度脱水后产生的脱除水,采用水解酸化-A/O-MBR工艺对其进行处理,考察了系统95 d的运行情况。研究结果表明,当缺氧池和好氧池的HRT分别为30 h,好氧池DO为2~3 mg/L,硝化液回流比为200%时,出水可达《污水排入城镇下水道水质标准》(CJ 343—2010)的排放标准。MBR对COD有一定的过滤截留作用,但对氨氮的截留无明显效果,适当地增大硝化液回流比会提高氨氮去除效率。  相似文献   

18.
折点氯化法具有反应速度快、氨氮脱除率高等优点,广泛应用于氯碱等行业中,但反应过程中产生二氯胺致使废水中余氯浓度过高,无法满足离子膜法烧碱生产安全技术规定(HAB004—2002)。为解决这一问题,本文提出了超重力技术强化折点氯化法处理氨氮废水的新工艺,利用超重力技术强化传质的特点,实现次氯酸钠和氨氮的快速反应以及二氯胺的有效去除,研究了超重力因子(β)、氯氮比(Cl/N)、pH和液体流量QL等操作参数对氨氮脱除率和余氯的影响规律。研究结果表明,当Cl/N=11、β=30、pH=6~8和液体流量QL=80L/h时,氨氮去除率>95%,余氯浓度<1.5mg/L。与传统反应器相比,二氯胺去除效果明显,处理后的水中氨氮满足烧碱安全生产技术规定,此方法对于氯碱行业中低浓度氨氮的去除具有广阔的应用前景。  相似文献   

19.
采用批量实验研究NaCl盐度对常规活性污泥(非耐盐污泥)缺氧反硝化降解吡啶的影响。结果表明,吡啶降解受到盐度的影响,在盐度为5.0 g/L时,降解率最高。硝酸盐氮在盐浓度为2.5 g/L时,降解率可达85%,当盐度大于10.0 g/L时,氨氮浓度呈上升趋势,高盐度使微生物结构发生破坏是氨氮浓度升高的原因;在不同盐度条件下,总氮降解浓度会发生变化,在盐度为2.5 g/L时,总氮降解率最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号