首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antagonists of NMDA glutamate receptors have been shown to alleviate neuropathic pain in rats and humans. However, NMDA antagonists can cause significant side effects ranging from behavioral disturbances to injury of neurons in the posterior cingulate/retrosplenial (PC/RS) cortex. We have found that alpha-2 adrenergic agonists prevent the PC/RS neurotoxic side effects of NMDA antagonists. In the present study of adult female rats subjected to sciatic nerve ligation (Bennett neuropathic pain model) and tested for paw withdrawal latency (PWL) following a thermal stimulus, we evaluated the ability of the NMDA antagonist, MK-801, to alleviate neuropathic pain either by itself or when administered together with the alpha-2 adrenergic agonist, clonidine. We found that MK-801, at a dose (0.05 mg/kg s.c.) that is known to cause mild hyperactivity but is subthreshold for producing PC/RS neurotoxic changes, relieved the neuropathic pain state associated with sciatic nerve ligation. However, the relief at this dose was very transient, and no neuropathic pain-relieving effect was observed at a lower dose (0. 025 mg/kg s.c.) of MK-801. Clonidine, at a dose (0.05 mg/kg s.c.) that prevents the cerebrocortical neurotoxic effects of MK-801, decreased sensitivity to the thermal stimulus equally under all conditions (ligated, sham ligated, unoperated), but did not specifically relieve neuropathic pain in the ligated limb. Combining this dose of clonidine with an ineffective dose (0.025 mg/kg s.c.) of MK-801 provided specific, complete and long lasting (up to 4 h) relief from neuropathic pain. Rats receiving this drug combination did not display hyperactivity or any other behavioral disturbance typically associated with MK-801 treatment, nor show neurotoxic changes in cerebrocortical neurons. In separate experiments on normal unoperated rats, we found that clonidine (0.05 mg/kg s.c.) counteracted the hyperactivity induced by MK-801 (0.05 mg/kg s.c.) and returned activity levels to a normal range. These findings signify that clonidine, which does not specifically relieve neuropathic pain, can potentiate the neuropathic pain-relieving action of MK-801, while also protecting against neurotoxicity and hyperactivity side effects of MK-801. The potentiation is of a sufficient magnitude that it permits cutting the MK-801 dose requirement in half, thereby achieving prolonged neuropathic pain relief while doubling the margin of safety against any type of side effect that might be mediated by blockade of NMDA receptors.  相似文献   

2.
The involvement of kainate (KA)-sensitive regions in ethanol withdrawal behaviors was investigated in male Wistar rats given three intraperitoneal (IP) injections of KA (12 mg/kg) or saline each followed by recovery at 4 degrees C for 5 h and room temperature for 3 days and a final KA or saline injection at room temperature. Some animals received MK-801 (1 mg/kg, IP) 30 min after each injection and one group received saline only. The saline/saline, saline/MK-801, and KA/MK-801 groups displayed typical ethanol withdrawal behaviors 8-12 h after ethanol withdrawal. These behaviors were attenuated in the KA/saline group. Audiogenic seizures could be induced in all treatment groups 12 h after withdrawal. There was severe neuronal degeneration in the hippocampal CA region and the piriform cortex of the KA/saline-treated animals that was reduced by MK-801 treatment. The inferior colliculus remained intact. These results suggest that the N-methyl-D-aspartate receptor mediates KA-induced damage in limbic structures and that these regions may play an important role in typical, but not audiogenically induced ethanol-withdrawal behaviors.  相似文献   

3.
This study was designed to investigate the influence of the calcium (Ca2+) channel inhibitors nicardipine, nifedipine, and flunarizine on the protective action of MK-801, LY 235959 [N-methyl-D-aspartate (NMDA) receptor antagonists], and GYKI 52466 (a non-NMDA receptor antagonist) against electroconvulsions in mice. Unlike nicardipine (15 mg/kg) or flunarizine (10 mg/kg) nifedipine (7.5 and 15 mg/kg) potentiated the protective potency of MK-801 (0.05 mg/kg), as reflected by significant elevation of the convulsive threshold (a CS50 value of the current strength in mA producing tonic hind limb extension in 50% of the animals). The protective activity of LY 235959 and GYKI 52466 was reflected by their ED50 values in mg/kg, at which the drugs were expected to protect 50% of mice against maximal electroshock-induced tonic extension of the hind limbs. Nicardipine (3.75 15 mg/kg), nifedipine (0.94-15 mg/kg), and flunarizine (2.5-10 mg/kg) in a dose-dependent manner markedly potentiated the antiseizure efficacy of LY 235959. Flunarizine (5 and 10 mg/kg) was the only Ca2+ channel inhibitor to enhance the protective action of GYKI 52466 against electroconvulsions. Except with MK-801 + flunarizine (motor performance) or GYKI 52466 + flunarizine (long-term memory), combination of NMDA or non-NMDA receptor antagonists with Ca2+ channel inhibitors produced an impairment of motor performance (evaluated in the chimney test) and long-term memory acquisition (measured in the passive avoidance task) as compared with vehicle treatment.  相似文献   

4.
Two experiments examined the effect of the noncompetitive NMDA receptor antagonist, dizocilpine maleate (MK-801), on spatial working memory during development. Rats were trained on spatial delayed alternation (SDA) in a T-maze after ip administration of 0.06 mg/kg MK-801, 0.1 mg/kg MK-801, or saline on postnatal days (P) P23 and P33 (Experiment 1), or following bilateral intrahippocampal administration of 2.5 or 5.0 υg per side MK-801 or saline on P26 (Experiment 2). In Experiment 1, MK-801 dose-dependently impaired SDA learning at both ages. Because the same doses of systemic MK-801 have no effect on T-maze position discrimination learning, impairment of SDA by MK-801 likely reflects disruption of spatial working memory. Both doses of MK-801 abolished acquisition of SDA performance in Experiment 2. Disruption of hippocampal plasticity may account for the effects produced by systemic MK-801 administration. These results confirm and extend earlier lesion studies by implicating plasticity of hippocampal neurons in the ontogeny of spatial delayed alternation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Rats given an antagonist against N-methyl-D-aspartate, (+)-10, 11-dihydro-5-methyl-5H-debenzo (a, d) cycloheptene-5, 10-imine (MK-801), were compared with control rats for their activity and exploratory behavior (habituation, exploration time to the spatial change of one of 4 objects and to the new object) in a circular open field. Rats given 0.07 mg/kg dose of MK-801 displayed no significant differences with the controls. Rats given 0.1 mg/kg dose of MK-801 failed to respond to the spatial change, whereas they displayed habituation and exploration to the new object at the same degree as the control rats. Rats given 0.3 mg/kg dose of MK-801 displayed hyperactivity and did not display habituation and exploration. The result suggests that the 0.1 mg/kg dose of MK-801, which dose not affect on activity, habituation and exploration to the new object in rats, selectively affects on acquisition of spatial information and reduces their spatial exploration.  相似文献   

6.
(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate, (MK-801) a potent noncompetitive antagonist of central NMDA receptors, has been hypothesized to have rewarding properties indicative of abuse potential. To test this hypothesis, the effects of MK-801 on the acquisition of a conditioned place preference and on locomotor activity were assessed and compared with d-amphetamine. Both MK-801 (0.03 and 0.1 mg/kg, SC) and d-amphetamine (1.0 mg/kg, SC) administration resulted in the acquisition of a conditioned place preference. However, while both amphetamine and the higher dose of MK-801 produced a behavioral activation during the training period the lower dose of MK-801 did not. These results suggest that MK-801, at doses that produce behavioral activation and below, is rewarding and therefore may have abuse potential.  相似文献   

7.
Four-layered microgyria is associated with many developmental disorders, including mental retardation, epilepsy, and developmental dyslexia. Freezing lesions to the newborn rodent neocortex result in the formation of four-layered microgyria. Previous research had suggested this type of injury acts as an hypoxic/ischemic event to the developing cortical plate. The current study examines the effectiveness of the non-competitive N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) in protecting against freezing injury to the newborn rat cortical plate. Three groups of rats received freezing injury to the cortical plate on the first day of life (postnatal day 1). Two groups were treated with MK-801 (1 or 2 mg/kg) 0.5 h before the lesion and 6 and 14 h after, while one group received saline injections. A fourth group received MK-801 injections, but did not have a freezing lesion. The volume of neocortical abnormality was determined for all three groups in rats killed after postnatal day 7. Treatment with the higher dose of MK-801 (3 x 2 mg/kg) dramatically reduced the effects of freezing injury but also resulted in over 50% mortality in both lesioned and unlesioned groups. Animals in the lesioned group, however, had a decreased volume of abnormal cortex, and there were fewer animals with microsulci than in the untreated group. This is the first demonstration of a significant anatomical neuroprotective effect in newborns leading to a reduction of cortical malformation.  相似文献   

8.
1. The influence of voltage dependent calcium channel blocker (VDCC), nimodipine and N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 on the brain free arachidonic acid (FAA) level and on the learning ability in hypoxia-exposed rats was examined. 2. Some animals were decapitated after cerebral hypoxia had been obtained and the brain FAA level was determined by gas chromatography. The other animals were trained in a passive avoidance procedure and were exposed to hypoxic conditions immediately after the learning trial response had been acquired. A passive avoidance retention test was performed 24 hours later. 3. Various doses of nimodipine (0.03; 0.1; 0.3 and 1.0 mg/kg) and MK-801 (0.03; 0.1 and 0.3 mg/kg) had been injected 30 minutes before biochemical or behavioral procedures started. 4. It was found that hypoxia strongly increased the brain FAA level and impaired the retention of the passive avoidance response. 5. Pretreatment with 0.3 mg/kg and 1.0 mg/kg of nimodipine prevented the brain FAA accumulation. It has also been shown that all tested doses of nimodipine significantly improved the retention deficit in the animals exposed to hypoxia. 6. Neither the one of tested doses of MK-801 influenced significantly the increase of the brain FAA level and/or passive avoidance behavior in hypoxic animals. 7. These results confirm the hypothesis that the brain FAA accumulation and cognitive impairment, caused by hypoxia, are maybe associated with disturbances in calcium homeostasis and that nimodipine may be useful in ameliorating the hypoxia-induced brain tissue damage. Blocade of NMDA receptor-channel complex by MK-801 was not sufficient to prevent hypoxia-induced neuronal damage.  相似文献   

9.
These experiments observed the immediate and long-term effects of neonatal treatment with MK-801 on patterned single alternation (PSA), a form of nonspatial, memory-based learning. Rat pups were injected daily on postnatal days (PND) 7-19, with MK-801 (MK+) or the less active isomer of MK-801 (MK-) (0.25 mg/kg), and trained at either PND 22 or 60. Rats treated with MK+ or MK- and trained on PND 22 were significantly impaired in PSA when compared with the saline control. Beyond the learning impairment, MK+ rats showed an overall decreased running speed during training. They also presented an array of abnormal behaviors and significant weight loss. These nonassociative variables were determined for several doses (0.025, 0. 05, 0.1, 0.15, and 0.20 mg/kg) through PND days 22-25. Rats that received the threshold dose for secondary effects (0.025 mg/kg) also showed an overall decrease in running speed, but failed to show a significant nonspatial learning impairment on PSA. The PSA learning impairment was found to be not long lasting; rats trained at PND 60, after neonatally receiving the original high dose of MK-801, did not differ from controls.  相似文献   

10.
1. The authors examined the anticonvulsant effects of MK-801 on the pilocarpine-induced seizure model. Intraperitoneal injection of pilocarpine (400 mg/kg) induced tonic and clonic seizure. Scopolamine (10 mg/kg) and pentobarbital (5 mg/kg) prevented development of pilocarpine-induced behavioral seizure but MK-801 (0.5 mg/kg) did not. 2. An electrical seizure measured with hippocampal EEG appeared in the pilocarpine-treated group. Scopolamine and pentobarbital blocked the pilocarpine-induced electrographic seizure, MK-801 treatment augmented the electrographic seizure induced by pilocarpine. 3. Brain damage was assessed by examining the hippocampus microscopically. Pilocarpine produced neuronal death in the hippocampus, which showed pyknotic changes. Pentobarbital, scopolamine and MK-801 protected the brain damage by pilocarpine, though in the MK-801-treated group, the pyramidal cells of hippocampus appeared darker than normal. In all treatments, granule cells of the dentate gyrus were not affected. 4. These results indicate that status epilepticus induced by pilocarpine is initiated by cholinergic overstimulation and propagated by glutamatergic transmission, the elevation of which may cause brain damage through an excitatory NMDA receptor-mediated mechanism.  相似文献   

11.
Four experiments examined the effect of dizocilpine maleate (MK-801), a noncompetitive N-methyl-Daspartate (NMDA) receptor antagonist, on reversal learning during development. On postnatal days (PND) 21, 26, or 30, rats were trained on spatial discrimination and reversal in a T-maze. When MK-801 was administered (intraperitoneally) before both acquisition and reversal, 0.18 mg/kg generally impaired performance, whereas doses of 0.06 mg/kg and 0.10 mg/kg, but not 0.03 mg/kg, selectively impaired reversal learning (Experiments 1 and 3). The selective effect on reversal was not a result of sensitization to the second dose of MK-801 (Experiment 2) and was observed when the drug was administered only during reversal in an experiment addressing state-dependent learning (Experiment 4). Spatial reversal learning is more sensitive to NMDA-receptor antagonism than is acquisition. No age differences in sensitivity to MK-801 were found between PND 21 and 30. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The neuroprotective properties of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (MK-801) and the non-NMDA antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and alpha-methyl-4-carboxyphenylglycine (MCPG) were evaluated against neuronal injury produced by the intraspinal injection of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Forty-nine animals were divided into eight groups in order to evaluate the effects of different drug combinations: (a) NMDA; (b) NMDA + MCPG; (c) NMDA + NBQX; (d) NMDA + MK-801; (e) AMPA; (f) AMPA + MCPG; (g) AMPA + MK-801; and (h) AMPA + NBQX. Drugs were microinjected into spinal segments T12-L3 through a micropipette attached to a Hamilton microliter syringe. Spinal cords were evaluated after a survival period of 48 h at which time NMDA and AMPA were found to produce morphological changes over the concentration ranges of 125-500 mM and 75-500 microM, respectively. Neuronal loss following injections of NMDA + MK-801 or AMPA + NBQX was significantly less than that following injections of NMDA or AMPA alone. By contrast, neuronal loss following co-injections of NMDA or AMPA with inappropriate antagonists, i.e., NMDA + NBQX/MCPG or AMPA + MCPG/MK-801, was not significantly different from that produced by NMDA or AMPA. The results suggest that elevations in spinal levels of glutamate followed by prolonged activation of NMDA and AMPA receptor subtypes initiate an excitotoxic cascade resulting in neuronal injury. Blockade of NMDA and AMPA effects by MK-801 and NBQX respectively confirms the well documented neuroprotective effects of these drugs and lends support to the potential importance of NMDA and especially AMPA receptor antagonists as therapeutic agents in the treatment of acute spinal cord injury.  相似文献   

13.
The effects of pretreatment with the non-competitive NMDA antagonist (+)MK-801 on the behavioral alterations induced by repeated restraint stress were investigated. Repeatedly stressed (restraint stress 2 h a day x 10 days) mice showed enhanced sensitivity to the inhibitory effects of a low dose of direct dopamine agonist, apomorphine (0.25 mg/kg), on climbing behavior. On the other hand, no changes were observed for the stimulatory effect of the high dose of apomorphine (3 mg/kg) on this behavioral response. Mice pretreated with MK-801 (0.15 mg/kg) before the stressful experience did not show altered response to the low dose of apomorphine (0.25 mg/kg). Finally, ten daily injections with 0.15 mg/kg MK-801 did not affect the behavioral response to the low dose of apomorphine, but enhanced the stimulatory effect of the high dose of the dopaminergic agonist on climbing behavior. Therefore, it is possible that the protective action of MK-801 against stress-induced behavioral alteration is due to changes in sensitivity of postsynaptic receptors.  相似文献   

14.
Effects of MK-801, an N-methyl-D-aspartate antagonist, on short-interval timing were examined using the peak-interval (PI) and PI-gap procedures. Fisher 344 rats were given daily injections of 0.025 mg/kg, 0.05 mg/kg, and 0.2 mg/kg MK-801. The main results were (a) 0.2 mg/kg MK-801 produced an immediate overestimation of the criterion time; (b) MK-801 increased peak rate of responding; (c) 0.2 mg/kg MK-801 produced an increase in variability; (d) during the PI-gap procedure, a reset pattern was observed for all rats (MK-801 and saline). Results suggest that MK-801 has at least 2 effects. First, MK-801 interferes with short-interval timing by producing an overestimation of time and a nonscalar increase in variability. Second, MK-801 increases response rate, suggesting a decrease in response inhibition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
To assess the effects of the novel sigma ligand JO 1994 on behavioural, histological and autoradiographical changes following global ischaemia, the Mongolian gerbil was used. Three experiments were carried out and in each case ischaemia was induced by bilateral carotid occlusion (BCO) for 5 min. In the first experiment we examined the effects of JO 1994 administered at doses of 0.25, 0.5 and 1 mg/kg i.p. 1 h before 5 min BCO on histological parameters 96 h after surgery. In the second experiment the effects of JO 1994 administered at doses of 2.5, 5, 10 and 20 mg/kg i.p. 1 h before 5 min BCO on locomotor activity 24, 48 and 72 h after surgery and on histological parameters 96 h after surgery was examined. In the third experiment the effects of JO 1994 (2.5 and 5 mg/kg i.p.), BMY 14802 (1 and 10 mg/kg i.p.) and MK-801 (2.5 mg/kg i.p.) administered 30 min, 6, 24, 48, 72, 96 and 120 h post-surgery on the densities of M1 and M2 muscarinic receptors in 35 brain regions, 7 days after surgery was examined. Results indicated that 5 min bilateral carotid occluded animals were hyperactive 24, 48 and 72 h after surgery. JO 1994 attenuated this hyperactivity. Extensive neuronal death was observed in the CA1 layer of the hippocampus in 5 min BCO animals 96 h after surgery. The low doses of JO 1994 (0.25, 0.5 and 1 mg/kg) had no effect on the ischaemia-induced cell death. However JO 1994 (2.5, 5, 10 and 20 mg/kg i.p.) protected against the neuronal death of cells in the CA1 layer (P < 0.01-0.03). There was a large loss of M1 and M2 receptors in the CA1 regions of the hippocampus. MK-801, BMY 14802 and JO 1994 provided significant (P < 0.01) protection against this ischaemia-induced receptor loss.  相似文献   

16.
Bilirubin neurotoxicity can be mediated by numerous mechanisms due to its increased permeability in neuronal membranes. The present study tests the hypothesis that a prolonged bilirubin infusion modifies the N-methyl-D-aspartate (NMDA) receptor/ ion channel complex in the cerebral cortex of newborn piglets. Studies were performed in seven control and six bilirubin-exposed piglets, 2-4 d of age. Piglets in the bilirubin group received a 35 mg/kg bolus of bilirubin followed by a 4-h infusion (25 mg/kg/h) of a buffer solution containing 0.1 N NaOH, 5% human albumin, and 0.055 Na2HPO4 with 3 mg/mL bilirubin. The final mean bilirubin concentration in the bilirubin group was 495.9 +/- 85.5 mumol/L (29.0 +/- 5.0 mg/dL). The control group received a bilirubin-free buffer solution. Sulfisoxazole was administered to animals in both groups. P2 membrane fractions were prepared from the cerebral cortex. [3H]MK-801 binding assays were performed to study NMDA receptor modification. The Bmax in the control and bilirubin groups were 1.20 +/- 0.10 (mean +/- SD) and 1.32 +/- 0.14 pmol/mg protein, respectively. The value for Kd in the control brains was 6.97 +/- 0.80 nM compared with 4.80 +/- 0.28 nM in the bilirubin-exposed brains (p < 0.001). [3H]Glutamate binding studies did not show a significant difference in the Bmax and Kd for the NMDA-specific glutamate site in the two groups. The results show that in vivo exposure to bilirubin increases the affinity of the receptor (decreased Kd) for [3H]MK-801, indicating that bilirubin modifies the function of the NMDA receptor/ion channel complex in the brain of the newborn piglet. We speculate that the affinity of bilirubin for neuronal membranes leads to bilirubin-mediated neurotoxicity, resulting in either short- or long-term disruption of neuronal function.  相似文献   

17.
Effect of clozapine on MK-801-induced hyperlocomotion and stereotypy as well as open field behavior was studied. Clozapine (0.1-7.5 mg/kg) dose-dependently blocked MK-801(0.5 mg/kg)-induced stereotypy. Both total and ambulatory responses were blocked by even the lower doses (0.1-0.5 mg/kg) of clozapine. In open field test, clozapine selectively blocked hyperambulation induced by MK-801 (0.1 mg/kg) whereas it potentiated MK-801 (0.1 mg/kg)-induced stereotypy at all the doses used. Haloperidol (0.25 and 0.5 mg/kg) and SCH 23390 (0.5 and 1 mg/kg) showed a dose-dependent effect on MK-801-induced behaviors while sulpiride (25 and 50 mg/kg) failed to modify MK-801-induced open field behavior. This study supports the preferential effect of clozapine on dopamine receptors located in mesolimbic area and further suggests the possibility of using open field behavior induced by MK-801 as a model for studying atypical antipsychotics.  相似文献   

18.
The relationship between the effects of the N-methyl-D-aspartate (NMDA) antagonist MK-801 on acute responses to ethanol and its ability to block ethanol sensitization and tolerance was examined in DBA/2J mice. Cross-sensitization between these drugs was also studied. Repeated administration of 0.1 mg/kg MK-801 with ethanol potentiated, whereas 0.25 mg/kg attenuated, sensitization to ethanol's locomotor stimulant effects; rearing was similarly affected. There was evidence for cross-sensitization between ethanol and 0.25 mg/kg MK-801. MK-801 potentiated ethanol's ataxic effects in the grid test, but had no effect on tolerance to this effect. MK-801's effects on ethanol sensitization appeared to be related to its own behavioral effects, rather than NMDA receptor blockade per se. Further, these studies demonstrate dissociation between ethanol sensitization and tolerance. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
We investigated the effects of thyrotropin releasing hormone (TRH) on changes in cortical concentrations of acetylcholine (ACh) and monoamines produced by concussion in mice. Concussion was induced by dropping a metal rod on the head, and the concentration of ACh, norepinephrine (NE), dopamine (DA) and serotonin (5-HT) in the cerebral cortex were measured by HPLC. We also examined the arousal effects of 0.5 mg/kg of TRH and 0.015 mg/kg of L-pyro-2-aminoadipyl-histidyl-thiazolidine-4-carboxamide (MK-771), a TRH analogue, injected intraperitoneally 10 min before concussion, on neurotransmitter concentrations. Mice were sacrificed at 25 (representing the righting reflex time) and 210 s (representing spontaneous movement time). At 25 s after concussion, the concentration of ACh was significantly higher than in control mice, but pretreatment with TRH and MK-771 prevented the rise in ACh. In contrast, head injury significantly reduced NE concentration. TRH and MK-771 also prevented the fall in NE. Concussion did not change cortical concentrations of DA and 5-HT. Our results suggest that disturbances of consciousness produced by concussion may be due to increased ACh and diminished NE in the cerebral cortex. Our findings also suggest that the arousal effects of TRH on concussion-induced disturbances of consciousness are due to normalization of cortical cholinergic and noradrenergic neuronal systems.  相似文献   

20.
PURPOSE: Treatment of the retina by laser photocoagulation often is complicated by an immediate side effect of visual impairment, caused by unavoidable, laser-induced destruction of healthy tissue adjacent to the lesion. A neuroprotective therapy that salvages this healthy tissue might enhance the benefit obtained from the treatment. This study was proposed to determine whether glutamate-receptor blockers can provide adjuvant neuroprotection during laser photocoagulation. The effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury was examined, in a rat model. METHODS: Argon laser lesions were created in the retinas of 36 DA rats, and were followed immediately by intraperitoneal injections of MK-801 (2 mg/kg) or saline. The animals were killed after 3, 20, or 60 days and the retinal lesions were evaluated histologically and morphometrically. RESULTS: Photoreceptor-cell loss was significantly less in MK-801-treated rats than in control animals. The proliferative membrane composed of retinal pigment epithelial cells and neovascular blood vessels, which was seen at the base of the lesion in control group retinas, was smaller in the MK-801-treated retinas. In rats treated with a higher dose of MK-801, the lesions showed almost no proliferative reaction. CONCLUSIONS: A potent noncompetitive NMDA-receptor blocker, MK-801 exhibits neuroprotective and antiproliferative properties in the retina. Glutamate-receptor blockers should be investigated further as potential adjuvant therapy in retinal photocoagulation treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号