首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human immunodeficiency virus type 1 integrase (HIV-1 IN) which catalyzes viral DNA integration into the host genome of infected cells represents an attractive target for AIDS therapy. We have previously demonstrated the ability of the IN-(147-175)-peptide derived from the catalytic core domain of HIV-1 IN to inhibit the enzyme activity in vitro. IN-(147-175)-peptide contains four heptad repeats and displays a high propensity for coiled-coil formation while its [P159]IN-(147-175)-peptide analog (Lys159-->Pro in the protein, Lys13-->Pro in the peptide) is unable to form a stable coiled-coil and is devoid of inhibitory activity [Sourgen, F., Maroun, R. G., Frère, V., Bouziane, M., Auclair, C., Troalen, F. & Fermandjian, S. (1996) Eur. J. Biochem. 240, 765-773]. Now, we report results from an NMR study on IN-(147-175)-peptide and [P159]IN-(147- 175)-peptide as well as on an optimized [E156, A163, A167]IN-(147-175)-peptide that is a better inhibitor of IN than IN-(147-175)-peptide. While in aqueous solution, IN-(147-175)-peptide and [P159]IN-(147-175)-peptide display only nascent helical features, [E156, A163, A167]IN-(147-175)-peptide exhibits 20% of helical content. In 20% trifluoroethanol/80% H2O, the helix content is the highest for [E156, A163, A167]IN-(147-175)-peptide (approximately 70%) and the lowest for [P159]IN-(147-175)-peptide (approximately 40%), due to a local helix break caused by the Pro residue. The NHs of residues in the two central helical heptads (a-g) of IN-(147-175)-peptide and [E156, A163, A167]IN-(147-175)-peptide display a regular periodic variation of their temperature coefficients in 20% trifluoroethanol. The b, c and f residues on the hydrophilic face of the amphipathic helix show high coefficients reflecting hydrogen bonded NHs, while the a and d residues on the hydrophobic face exhibit low coefficients, near random-coil values. The particular arrangement of the hydrophobic side-chains of a and d residues at the coiled-coil interface reduces the access of trifluoroethanol molecules to their amide groups. The inability of trifluoroethanol molecules to create interactions with the amide C=O groups, these being required to strengthen the intrahelical C=O...H-N hydrogen bonds, is the main cause for observation of heptadic a and d residues with low NH temperature coefficients. Such effects concern mostly the two central helical heptads of IN-(147-175)-peptide and [E156, A163, A167]IN-(147-175)-peptide implying that these ones are engaged in stable parallel coiled coils. Our results provide a link between the propensity of peptides for helix formation, their coiled-coil properties and their efficiency to inhibit IN.  相似文献   

2.
The captopril-inhibited enzyme which forms [Met5]-enkephalin from [Met5]-enkephalin-Arg6,Phe7 in isolated rabbit ear artery was characterized further by using various natural substrate candidates/analogues ([Met5]-enkephalin-Arg6,Phe7 and its amide, [Met5]-enkephalin, angiotensin I and bradykinin), peptidase inhibitors such as captopril, enalaprilate and thiorphan and by endothelial removal. 10(-5) and 10(-4) M but not 10(-6) M captopril reduced the effectiveness of [Met5]-enkephalin-Arg6,Phe7 and potentiated the effect of bradykinin but did not affect markedly the action of the other peptides. Of the inhibitors, enalaprilate was less effective than captopril, and thiorphan had no effect. The [Met5]-enkephalin-Arg6,Phe7-->[Met5]-enkephalin conversion was not affected by endothelial removal. The substrate and inhibitor spectrum of this non-endothelial enzyme activity bears no relationship in other, hitherto characterized dipeptidylcarboxypeptidases/endopeptidases known to be involved in the metabolism of the tested peptides.  相似文献   

3.
In order to identify Ca2+ ligands in the putative transmembrane domain 6 of the plasma membrane Ca2+ pump, amino acids Asn879, Met882, Asp883, and Ser887 were singly altered. Asn879, Met882, and Asp883 were chosen because the corresponding amino acids have been proposed as Ca2+ ligands in the sarcoplasmic reticulum Ca2+ pump (Clarke, D. M., Loo, T. W., and MacLennan, D. H. (1990) J. Biol. Chem. 265, 6262-6267). For the alterations, a fully active truncated version of the pump was used, because the interaction of Ca2+ with the pump could be studied without interference from calmodulin binding. The mutants at Asn and Asp did not carry out ATP-supported Ca2+ uptake and formed no acylphosphate from [gamma-32P]ATP, suggesting that, like the corresponding amino acids in the sarcoplasmic reticulum Ca2+ pump, these two are Ca2+ ligands. However, all the mutants at the position of Met882 showed some activity. Indeed, the Met882--> Ile mutant was fully active at a saturating Ca2+ concentration and only the K1/2 for Ca2+ activation was shifted slightly upward. Converting the Met to Thr (which is the corresponding residue in the sarcoplasmic reticulum Ca2+ pump) reduced the activity to 20% of the wild type, further emphasizing the differences between the two Ca2+ pumps. The mutant Ser887--> Ala was expressed in greater amounts than, and had a specific activity about 50% higher than, the wild type, indicating that this serine also could not be a Ca2+ ligand and could not replace the missing Thr at position Met882.  相似文献   

4.
The fibrillation of human calcitonin (hCT) has been investigated by NMR in aqueous solution. The time course of proton one- and two-dimensional NMR spectra of hCT (80 mg/mL at pH 2.9) was measured during the fibrillation. It showed a gradual broadening of the peptide peaks, followed by a rapid broadening and subsequent disappearance of the peaks. The gradual broadening can be attributed to equilibrium between monomer and associated hCT, whereas the rapid broadening can be attributed to formation of aggregates and to gelation of the peptide solution. All the peptide peaks did not broaden and disappear simultaneously. Peaks of residues in the N-terminal (Cys1-Cys7) and central (Met 8-Pro23) regions broadened and disappeared faster during the gradual broadening than those in the C-terminal region (Gln24-Pro32). Moreover, in the N-terminal and central residues, peaks of Cys1, Leu4,9, Met 8, Tyr12, Asp15, and Phe16,19,22 disappeared faster than those of Asn3,17, Ser5, Cys7, Gln14, Lys18, and His20. Hydrogen-deuterium exchange of amide protons indicated the formation of hydrogen bonds caused by association of hCT molecules. The amphiphilicity of the peptide appears to be important for the hCT association.  相似文献   

5.
The synthetic laminin pentapeptide amide fragment (LF), Tyr-Ile-Gly-Ser-Arg-NH2 corresponding to a part of B1 chain of the glycoprotein, laminin, and six of its analogues having structural modifications at positions 1, 3 and 4 were synthesized by solid phase method employing mainly 9-fluorenylmethoxycarbonyl-amino acid trichlorophenyl esters as coupling agents and Merrifield resin as the solid support. Their biological activities were studied in vivo by lung tumor colonization assay and in vitro by cell adhesion assay. The activity of synthetic LF was found to correlate with the earlier reported results in both in vivo and in vitro assays. Among the analogues made, [Tyr4] LF and [Thr4]LF were found to inhibit the lung tumor colonies more efficiently than LF itself in the in vivo assay whereas [D- Ser4]LF exhibited almost the same inhibition as LF.  相似文献   

6.
The solution structure of oxidized Saccharomycescerevisiae Cys102Ser iso-1-cytochromechas been determined using 1361 meaningful NOEs (of 1676 total) after extending the published proton assignment [Gao, Y., et al. (1990) Biochemistry 29, 6994-7003] to 77% of all proton resonances. The NOE patterns indicate that secondary structure elements are maintained upon oxidation in solution with respect to the solid state and solution structures of the reduced species. Constraints derived from the pseudocontact shifts [diamagnetic reference shift values are those of the reduced protein [Baistrocchi, P., et al. (1996) Biochemistry 35, 13788-13796]] were used in the final stages of structure calculations. After restrained energy minimization with constraints from NOEs and pseudocontact shifts, a family of 20 structures with rmsd values of 0.58 +/- 0.08 and 1.05 +/- 0.10 A (relative to the average structure) for the backbone and all heavy atoms, respectively, was obtained. The solution structure is compared with the crystal structure and the structures of related systems. Twenty-six amide protons were detected in the NMR spectrum 6 days after the oxidized lyophilized protein was dissolved in D2O (pH 7.0 and 303 K); in an analogous experiment, 47 protons were observed in the spectrum of the reduced protein. The decrease in the number of nonexchanging amide protons, which mainly are found in the loop regions 14-26 and 75-82, confirms the greater flexibility of the structure of oxidized cytochrome c in solution. Our finding of increased solvent accessibility in these loop regions is consistent with proposals that an early step in unfolding the oxidized protein is the opening of the 70-85 loop coupled with dissociation of the Met80-iron bond.  相似文献   

7.
Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.  相似文献   

8.
In earlier reports we identified specific point substitutions (DPhe12,Nle21,38), cyclization strategies [in particular, introduction of lactam rings such as that of cyclo(Glu30,Lys33)], and deletions (residues 1-7) in the CRF molecule that led to agonists. We also noted that further deletions (residues 8-14) produced antagonists such as astressin ?cyclo(30-33)[DPhe12,Nle21,38, Glu30, Lys33]hCRF(12-41)? (1). We hypothesized that the lactam ring promoted conformational stability to yield analogues with increased potency both in vitro and in vivo as compared to that of their linear counterparts. Additionally, we reported that cyclo(30-33)[DPhe12,Nle21,38, Glu30,DHis32,Lys33]hCRF(12-41) (3) and dicyclo(26-36,30-33)[Ac-Asp9,DPhe12,Nle21,38, Cys26, Glu30,Lys33, Cys36]hCRF(9-41) were ca. twice and 1/100 as potent as astressin, respectively, suggesting a putative turn that encompasses residues 30-33 (previous paper: Koerber et al. J. Med. Chem. 1998, 41). To increase the potency of 1 and/or 3 in vivo, we extended their chain length by one (5-8), two (9, 10), and three (11, 12) residues at the N-terminus and acetylated (6, 8, 10, 12). Of the compounds tested for duration of action (1, 3-6, 8), we found 6 and 8 to be slightly longer-acting than astressin or [DHis32]astressin, while their potencies in vitro were not significantly different from that of 3. Additionally, we introduced CalphaMe-leucine residues in lieu of leucine at positions 14, 15, 19, 27, and 37 in [DHis32]astressin. The analogue [CalphaMe-Leu27,DHis32]astressin (16) was more potent (although not statistically in all cases) than the other four analogues in vitro. While acetylation of the N-terminus of 16 (i.e., 18) or of [CalphaMe-Leu27]astressin (i.e., 19) did not have a significant effect on in vitro potency, elongation of the N-terminus by one or three residues in addition to acetylation resulted in cyclo(30-33)[DPhe12,Nle21,CalphaMe-Leu27,Glu3 0,DHis32,Lys33, Nle38]Ac-hCRF(11-41) (21), cyclo(30-33)[DPhe12,Nle21,CalphaMe-Leu27, Glu30,Lys33,Nle38]Ac-hCRF(9-41) (22), and cyclo(30-33)[DPhe12, Nle21, CalphaMe-Leu27,Glu30,DHis32,Lys33,Nle38 ]Ac-hCRF(9-41) (23) that were longer-acting than 6 and 8 (ca. 2 h inhibition of ACTH secretion at 25 micrograms/adrenalectomized rat). Analogues 22 and 23 were also more potent than astressin at reversing intracisternal CRF- and abdominal surgery-induced delay of gastric emptying in conscious rats.  相似文献   

9.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

10.
The uterotonic potencies of the naturally occurring mammalian tachykinins and the synthetic subtype-selective agonist analogues of these agents [Lys5,MeLeu9,Nlel0]neurokinin A-(4-10) and [Nle10]neurokinin A-(4-10) (tachykinin NK2 receptor-selective), [Sar9,Met(O2)11]substance P (tachykinin NK1 receptor-selective) and senktide (tachykinin NK3 receptor-selective) were determined using preparations from oestradiol-treated rats. The endopeptidase 24.11 inhibitor, N-[N-[1-(S)-carboxyl-3-phenylpropyl]-(S)-phenyl-alanyl-(S)-isoserine+ ++ (SCH 39370), potentiated responses to neurokinin A, neurokinin B and substance P, but not to [Lys5,MeLeu9,Nle10)]neurokinin A-(4-10) or senktide. [Nle10]neurokinin A-(4-10) effects were potentiated by SCH 39370 with amastatin and those to [Sar9,Met(O2)11]substance P were potentiated by SCH 39370 and captopril in combination. In the presence of optimal concentrations of peptidase inhibitors the relative order of agonist potency was: neurokinin A > substance P > neurokinin B for the naturally occurring mammalian tachykinins and [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) > [Nle10]neurokinin A-(4-10) > [Sar9,Met(O2)11]substance P > senktide for the synthetic tachykinin analogues. Thus, while a tachykinin NK2 receptor predominates in the oestrogen-primed uterus, a tachykinin NK1 receptor may also be present. The non-peptide tachykinin NK3 receptor antagonist, SR 142801, did not antagonise the effects of senktide suggesting that tachykinin NK3 receptors do not mediate its relatively minor effect on the uterus of the oestrogen-primed rat.  相似文献   

11.
This study examined effects on memory formation produced by [Leu]enkephalin and [Met]enkephalin administration in 2 regions of the 2-day-old chick brain involved in memory formation: the intermediate medial hyperstriatum ventrale (IMHV) and the lobus parolfactorius (LPO). Basal concentrations of endogenous [Leu]enkephalin and [Met]enkephalin were determined for 5 brain regions, and effects of 1-trial peck-avoidance training on enkephalin concentrations were examined in the IMHV and LPO. [Leu]enkephalin was amnestic when administered in the IMHV but not in the LPO. In contrast, [Met]enkephalin may be amnestic when administered in the LPO but not in the IMHV. Training decreased [Met]enkephalin concentration in the LPO but not in the IMHV. Training had no effect on [Leu]enkephalin concentration in either the IMHV or the LPO. Thus, amnestic effects of [Leu]- or [Met]enkephalin administration are brain-region specific. Regional activity of endogenous [Met]enkephalin during memory formation is consistent with localized amnestic effects produced by [Met]enkephalin administration. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Tyr(O)CNP is an analogue of C-type natriuretic peptide (CNP) with a tyrosine residue added to the NH2 terminus to allow its iodination. In the present study, the suitability of iodinated Tyr(O)CNP as a ligand was tested, and its potency was compared with that of other natural rat natriuretic peptides or structural analogues by radioligand binding experiments. Binding studies were performed on membranes of COS-1 cells transfected with expression plasmids for either rat natriuretic peptide receptor (NPR)-A, rat NPR-B, or bovine NPR-C. 125I-ANP(99-126) was used as a ligand to assess the binding characteristics of NPR-A and -C, and 125I-Tyr(O)CNP was used to study NPR-B. Binding associated to membranes of nontransfected COS cells was always < 3% of the total binding observed in membranes from cells transfected with receptor expression plasmids. Receptor densities in transfected cells ranged from 500 to 2500 fmol/mg of protein. High performance liquid chromatography and ionspray mass spectrometry analyses revealed that the reagents used in the course of iodination (lactoperoxidase, chloramine T, or N-chloromorpholine altered the structure of Tyr(O)CNP, most likely by changing the thiol of the Met17 residue into a sulfoxide. To further evaluate the usefulness of forms of iodinated Tyr(O)CNP on the cGMP responses in cells transfected with NPR-B. In conclusion, the suitability iodinated forms of Tyr(O)CNP as radioligands, we performed iodination of the peptide with cold iodine (Na-127I-). After purification by high performance liquid chromatography, three different modified peptides (i.e. Tyr(O)Met(O)17CNP, 127I-Tyr(O)Met(O)17CNP, and 127I2-Tyr(O)Met(O)17CNP) were recovered, and they were compared with CNP-22, Tyr(O)CNP, ANP(99-126), BNP-32, and des[Gin18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) NH2 (c-ANP) for their ability to bind to transfected receptors. The binding affinity of Tyr(O)CNP for NPR-A and -B receptors is similar to that of CNP. However, oxidation of the Met17 residue into methionine sulfoxide reduces the affinity of the compound for NPR-B by > 10-fold, whereas the addition of one or two iodines did not further reduce its affinity. Similar results were obtained on evaluation of the ability of the oxidized form of monoiodinated Tyr(O)CNP on the cGMP responses in cells transfected with NPR-B. In conclusion, the suitability of iodinated forms of Tyr(O)CNP as radioligands for binding studies on rat NPR-B is not optimal, and the results of studies using such compounds for the detection, identification, and quantification of this receptor should be interpreted with caution.  相似文献   

13.
The effect of [Met5]enkephalin, [Leu5]enkephalin, proenkephalin, dynorphin-(1-17) or beta-endorphin on the cytotoxic (51Cr release assay) activity of natural killer cells and macrophages/monocytes was studied in mice. It was found that a single i.p. injection of [Met5]enkephalin, [Leu5]enkephalin, beta-endorphin, dynorphin or proenkephalin as well as repeated treatment with both enkephalins increased natural killer cell activity. In vitro only [Met5]enkephalin stimulated natural killer cells. Opioid peptides did not affect the cytotoxic activity of macrophages/monocytes. In addition to functional alterations, both enkephalins and beta-endorphin increased the percentage of cells with natural killer phenotype. The results of this study suggest that the increase in natural killer cytotoxicity after opioid peptides injected once or for 14 days may result from an increased number of natural killer cells in the spleen.  相似文献   

14.
The octadecaneuropeptide ODN (QATVGDVNTDRPGLLDLK), originally characterized as an endogenous ligand for central-type benzodiazepine receptors, increases intracellular calcium concentration ([Ca2+]i) in rat astroglial cells. A series of ODN analogues was synthesized, and each compound was studied for its ability to induce Ca2+ mobilization in cultured rat astrocytes. Replacement of each amino acid by an L-alanine residue (AlaScan) showed that the N-terminal region of the molecule was relatively tolerant to alanine substitution (2-8, 10), except for the Ala9-substituted analogue (9) which was totally devoid of activity. Pyroglutamization (21) and acetylation (22) of the Gln1 residue reduced the Ca2+ response suggesting that a free N-terminal amine function is required for full activity of ODN. Alanine substitution of the residues in the C-terminal region of the molecule (11-14, 16-18) significantly reduced the biological activity of ODN. In particular, modifications of the Leu15 residue (15, 20) abolished the Ca2+-mobilizing activity. The analogues [Ala9]ODN (9), [Ala15]ODN (15), [D-Thr9]ODN (19), and [D-Leu15]ODN (20) partially antagonized the Ca2+ response evoked by ODN. Most importantly, the octapeptide ODN11-18 (OP, 24) produced a dose-response curve that was superimposable to that obtained with ODN, indicating that the C-terminal region of the molecule possesses full biological activity. Finally, the AlaScan of OP revealed that replacement of the Leu5 residue by Ala (29) or D-Leu (33) totally suppressed the calcium response, confirming the crucial contribution of the Leu15 residue of ODN to the biological activity of the neuropeptide.  相似文献   

15.
tRNA pseudouridylation activities have been detected in embryonic mouse cell fractions and in extracts from HeLa, mouse L-cell and baby hamster kidney (BHK) cell lines. These activities were identified by the use of heterologous reaction systems, with tRNA from hisT strains of Salmonella typhimurium as substrate. hisT mutants are defective for an enzyme that forms psi residues in the anticodon region of many tRNAs and accumulate undermodified species of tRNA. The pseudouridylation activity from BHK cells has been examined in detail and quantitated by a modified tritium release assay (Cortese, R., Kammen, H.O., Spengler, S.J., and Ames, B.N. (1974) J. Biol. Chem. 249, 1103-1108). Maximal rates of tritium release required a suitable cationic environment (optimally, a combination of Mg2+ and NH4+) and a thiol reductant. The activity was totally inhibited in the presence of thiol-reactive reagents, such as 5,5'-dithiobis(2-nitrobenzoic acid) and p-chloromercuribenzoate. A major portion of this 3H release activity was associated with psi modification reactions. This conclusion stems from the following observations: (a) BHK extracts preferentially catalyzed a release of 3H from hisT [5-3H]tRNA, rather than from similarly labeled wild type tRNA; (b) this activity was specific for protons attached to C5 of the pyrimidine rings; no release of 3H was obtained with hisT or wild type [6-3H]tRNA as substrate; (c) the reaction products of hisT tRNA with BHK enzyme were examined by reverse phase column chromatography of tRNAPhe isoacceptors on RPC-5 columns. The enzyme modified both of the principal isoacceptors of hisT tRNAPhe to an equal extent, yielding products indistinguishable from wild type tRNAPhe. Significant levels of 3H release were obtained by the action of enzyme on wild type [5-3H]tRNA, even after gel filtration of the enzyme. This suggests that the enzyme may be able to hypermodify certain species of wild type S. typhimurium tRNA. The activities for wild type tRNA and hisT tRNA appeared to be associated with the same enzyme.  相似文献   

16.
17.
We have designed and synthesized eight compounds 2-9 which incorporate various amino acid residues in positions 17, 18, and 21 of the glucagon molecule: 2, [Lys17]glucagon amide; 3, [Lys18]glucagon amide; 4, [Nle17,Lys18,Glu21]glucagon amide; 5, [Orn17,18, Glu21]glucagon amide; 6, [d-Arg17]glucagon; 7, [d-Arg18]glucagon; 8, [d-Phe17]glucagon; and 9, [d-Phe18]glucagon. Compared to glucagon (IC50 = 1.5 nM), analogues 2-9 were found to have binding affinity IC50 values (in nM) of 0.7, 4.1, 1.0, 2.0, 5.0, 25.0, 43.0, and 32.0, respectively. When these compounds were tested for their ability to stimulate adenylate cyclase (AC) activity, they were found to be full or partial agonists having maximum stimulation values of 100, 100, 100, 100, 87, 78, 94, and 100%, respectively. On the basis of the X-ray crystal structure of [Lys17,18,Glu21]glucagon amide reported here, the ability to form a salt bridge between Lys18 and Glu21 is probably key to their increased binding and second messenger activities. Among the eight analogues synthesized here, only analogue 4 preserves the ability to form a salt bridge between Lys18 and Glu21. However, since these modifications are minor they do not seem to change the amphiphilic character of the C-terminus, allowing these analogues to reach 78-100% stimulation in the adenylate cyclase assay. Biological data from analogues 6-9 supports the idea that position 18 of glucagon may influence binding only, while position 17 may influence both receptor recognition and transduction.  相似文献   

18.
Intracerebroventricular (i.c.v.) injection of tachykinins (TKs) inhibits ethanol intake and angiotensin II-induced water intake; the effects are apparently mediated by NK-3 and NK-1 receptors, respectively. The present study evaluated the effect of the TK PG-KII, a novel kassinin-like peptide isolated from the skin of the Australian frog Pseudophryne güntheri, in these in vivo tests for central activity. PG-KII, given by i.c.v. injection, potently inhibited alcohol intake in genetically selected alcohol-preferring rats, being about 3 times more potent than the selective NK-3 receptor agonist NH2-SENK. The dose of 100 ng/rat, that markedly inhibited ethanol intake, did not inhibit food intake and prandial drinking in food deprived rats, providing evidence that the effect of PG-KII on ethanol intake is behaviorally selective. The effect on ethanol intake was inhibited by i.c.v. injection of the NK-3 receptor antagonist R820, but was not modified by the NK-1 receptor antagonist SR 140333. PG-KII inhibited drinking induced by angiotensin II only at doses of 300 or 1000 ng/rat, being about 5 times less potent than the selective NK-1 receptor agonist [Sar9, Met(O2)11] substance P. These doses of PG-KII produced also marked increase in competing behaviors, such as grooming and locomotion. The dose of 1000 ng/rat evoked a general inhibition of the ingestive behavior, reducing also food intake. The i.c.v. injection of the NK-1 receptor antagonist SR 140,333 only slightly inhibited the effect of PG-KII on angiotensin II-induced drinking, while it markedly reduced that of [Sar9, Met(O2)11] substance P. These findings, in accordance with those of previous studies, indicate that PG-KII is endowed with marked activity at central NK-3 receptors, and low activity at NK-1 receptors.  相似文献   

19.
Activation of the beta2- and alpha2-adrenergic receptors (AR) involves hydrogen bonding of serine residues in the fifth transmembrane segment (TMV) to the catechol hydroxyls of the endogenous agonists, epinephrine and norepinephrine. With the beta2-AR both Ser204 and Ser207 but not a third TMV serine (Ser203) are required for binding and full agonist activity. However, with the alpha2a-AR only one of two TMV serines (Ser204, equivalent to Ser207 in the beta-AR) appears to contribute partially to agonist-binding and activation. Because the alpha1a-AR uniquely contains only two TMV serines, this subtype was used to systematically evaluate the role of hydrogen bonding in alpha1-AR activation. Binding of epinephrine or its monohydroxyl congeners, phenylephrine and synephrine, was not decreased when tested with alanine- substitution mutants that lacked either Ser188 (Ser188--> Ala) or Ser192 (Ser192-->Ala). With the substitution of both serines in the double mutant, Ser188/192-->Ala, binding of all three ligands was significantly reduced (10- 100-fold) consistent with a single hydrogen bond interaction. However, receptor-mediated inositol phosphate production was markedly attenuated only with the Ser188-->Ala mutation and not with Ser192-->Ala. In support of the importance of Ser188, binding of phenylephrine (meta-hydroxyl only) by Ser192-->Ala increased 7-fold over that observed with either the wild type receptor or the Ser188-->Ala mutation. Binding of synephrine (para-hydroxyl only) was unchanged with the Ser192-->Ala mutation. In addition, when combined with a recently described constitutively active alpha1a-AR mutation (Met292-->Leu), only the Ser188-->Ala mutation and not Ser192-->Ala relieved the high affinity binding and increased agonist potency observed with the Met292-->Leu mutation. A simple interpretation of these findings is that the meta-hydroxyl of the endogenous agonists preferentially binds to Ser188, and it is this hydrogen bond interaction, and not that between the para-hydroxyl and Ser192, that allows receptor activation. Furthermore, since Ser188 and Ser192 are separated by three residues on the TMV alpha-helix, whereas Ser204 and Ser207 of the beta2-AR are separated by only two residues, the orientation of the catechol ring in the alpha1-AR binding pocket appears to be unique and rotated approximately 120 degrees to that in the beta2-AR.  相似文献   

20.
The intrinsic activity of single-chain pro-urinary-type plasminogen activator (pro-uPA) and whether its receptor (uPAR) potentiates this activity remains controversial. In this report, the pro-uPA/uPAR-(1-281)-peptide complex in solution is shown to have equivalent plasminogen-activator activity to that of active two-chain uPA (tc-uPA). However, the activity of the complex was dependent on a synthetic tripeptide, Spectrozyme plasmin (Spl, H-D-2-aminohexanoic acid(Ahx)-hexatyrosyl-lysine-p-nitroanilide), which can also be used as a chromogenic substrate for plasmin. Furthermore, this activity could be completely suppressed by commonly used carrier proteins and detergents. The pro-uPA/uPAR-(1-281)-peptide complex at 1 nM displayed similar activity to that of tc-uPA for either [Glu1]plasminogen or [Lys77]plasminogen in chromogenic assays with Spl present as the plasmin substrate. When assayed with another plasmin substrate, S2251, the pro-uPA/uPAR-(1-281)-peptide complex was unable to activate plasminogen. The pro-uPA/uPAR-(1-281)-peptide complex and tc-uPA also showed a similar extent of plasminogen activation as measured by SDS/PAGE, when incubated with plasminogen and Spl in the presence of 100 micro M aprotinin, and plasminogen activation by pro-uPA alone was also stimulated in the presence of Spl in this assay. Activation of plasminogen by the pro-uPA/uPAR-(1-281)-peptide strictly required the presence of Spl, and pro-uPA remained in single-chain form during these assays. This activity of the pro-uPA/uPAR-(1-281)-peptide complex but not that of tc-uPA was completely inhibited by human serum albumin, bovine serum albumin, Tween-80, Triton X-100, and Pluronic-F68. Taken together, the data indicates that uPAR-(1-281)-peptide itself is not sufficient to augment pro-uPA activity and the presence of an effector molecule (e.g. Spl) is required to elicit the full plasminogen-activator activity of the pro-uPA/uPAR-(1-281)-peptide complex. It remains to be seen whether there is a physiological counterpart to this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号