首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increases in mesangial cell number may herald glomerular scarring, but they are not irreversible. This study sought mechanisms by which surplus glomerular mesangial cells can be cleared. A small proportion of cultured mesangial cells exhibited typical morphological features of apoptosis (programmed cell death), which was increased by growth factor deprivation or exposure to cycloheximide, stimuli known to increase apoptosis in other cell types. Apoptosis was confirmed by typical internucleosomal chromatin cleavage. In vivo, clear morphological evidence of mesangial apoptosis leading to phagocytosis by neighboring mesangial cells was obtained in self-limited mesangial proliferation induced in rats by Thy1.1 antibody, apoptosis occurring approximately 10-fold more frequently than in the healthy rat glomerulus. Indeed, changes in glomerular cell number in Thy1.1 nephritis strongly suggested that apoptosis is the major cell clearance mechanism counterbalancing cell division, thereby mediating resolution of glomerular hypercellularity in experimental mesangial proliferation.  相似文献   

2.
Mesangial cell proliferation, increased deposition of collagen, and expansion of the mesangial extracellular matrix (ECM) are key features in the development of mesangioproliferative diseases. Halofuginone, a low molecular weight anti-coccidial quinoazolinone derivative, inhibits collagen type alpha 1(I) gene expression and synthesis. We investigated the effect of halofuginone on both normal and SV40 transformed mesangial cell proliferation, collagen synthesis, and ECM deposition. Proliferation of both cell types was almost completely inhibited in the presence of 50 ng/ml halofuginone. The cells were arrested in the late G1 phase of the cell cycle and resumed their normal growth rate following removal of the compound from the culture medium. The antiproliferative effect of halofuginone was associated with inhibition of tyrosine phosphorylation of cellular proteins. Similar results were obtained whether the mesangial cells were seeded on regular tissue culture plastic or in close contact with a naturally produced ECM resembling their local environment in vivo. Halofuginone also inhibited synthesis and deposition of ECM by mesangial cells as indicated by a substantial reduction in 14C-glycine and Na2(35)SO4 incorporation into the ECM, and by the inhibition of collagen type I synthesis and gene expression. It is proposed that by inhibiting collagen type I synthesis and matrix deposition, halofuginone exerts a potent antiproliferative effect that may be applied to inhibit mesangial cell proliferation and matrix expansion in a variety of chronic progressive glomerular diseases.  相似文献   

3.
4.
Mesangial cell proliferation is a characteristic feature of many glomerular diseases and often precedes extracellular matrix expansion and glomerulosclerosis. This study provides the first evidence that SPARC (secreted protein acidic and rich in cysteine) could be an endogenous factor mediating resolution of experimental mesangial proliferative nephritis in the rat. SPARC is a platelet-derived-growth-factor-binding glycoprotein that inhibits proliferation of endothelial cells and fibroblasts. We now show that SPARC is synthesized by mesangial cells in culture and that SPARC mRNA levels are increased by platelet-derived growth factor and basic fibroblast growth factor. Recombinant SPARC or the synthetic SPARC peptide 2.1 inhibited platelet-derived-growth-factor-induced mesangial cell DNA synthesis in vitro. In a model of experimental mesangioproliferative glomerulonephritis, SPARC mRNA was increased 5-fold by day 7 and was identified in the mesangium by in situ hybridization. Similarly, SPARC was increased in glomerular mesangial cells and visceral epithelial cells by day 5 and reached maximal expression levels by day 7. Mesangial cell proliferation increased by 36-fold on day 5 and decreased abruptly on day 7. Maximal expression of SPARC was correlated with the resolution of mesangial cell proliferation. We propose that SPARC functions in part as an endogenous inhibitor of platelet-derived-growth-factor-mediated mesangial cell proliferation in glomerulonephritis and that it could account for the resolution of cellular proliferation in this disease.  相似文献   

5.
6.
We used patch clamp methodology to investigate how glomerular mesangial cells (GMC) depolarize, thus stimulating voltage-dependent Ca2+ channels and GMC contraction. In rat GMC cultures grown in 100 mU/ml insulin, 12% of cell-attached patches contained a Ca(2+)-dependent, 4-picosiemens Cl- channel. Basal NPo (number of channels times open probability) was < 0.1 at resting membrane potential. Acute application of 1-100 nM angiotensin II (AII) or 0.25 microM thapsigargin (to release [Ca2+]i stores) increased NPo. In GMC grown without insulin, Cl- channels were rare (4%) and unresponsive to AII or thapsigargin in cell-attached patches, and less sensitive to [Ca2+]i in excised patches. GMC also contained 27-pS nonselective cation channels (NSCC) stimulated by AII, thapsigargin, or [Ca2+]i, but again only when insulin was present. In GMC grown without insulin, 15 min of insulin exposure increased NPo (insulin > or = 100 microU/ml) and restored AII and [Ca2+]i responsiveness (insulin > or = 1 microU/ml) to both Cl- and NSCC. GMC AII receptor binding studies showed a Bmax (binding sites) of 2.44 +/- 0.58 fmol/mg protein and a Kd (binding dissociation constant) of 3.02 +/- 2.01 nM in the absence of insulin. Bmax increased by 86% and Kd was unchanged after chronic (days) insulin exposure. In contrast, neither Kd nor Bmax was significantly affected by acute (15-min) exposure. Therefore, we concluded that: (a) rat GMC cultures contain Ca(2+)-dependent Cl- and NSCC, both stimulated by AII. (b) Cl- efflux and cation influx, respectively, would promote GMC depolarization, leading to voltage-dependent Ca2+ channel activation and GMC contraction. (c) Responsiveness of Cl- and NSCC to AII is dependent on insulin exposure; AII receptor density increases with chronic, but not acute insulin, and channel sensitivity to [Ca2+]i increases with both acute and chronic insulin. (d) Decreased GMC contractility may contribute to the glomerular hyperfiltration seen in insulinopenic or insulin-resistant diabetic patients.  相似文献   

7.
Inhibition of 3-hydro-3-methylglutaryl coenzyme A reductase inhibits the production of mevalonate and has been shown to suppress proliferation in many cell types. Therefore, 3-hydro-3-methylglutaryl coenzyme A reductase inhibitors may have a beneficial effect in glomerular disease, because glomerular cell proliferation is a central feature in the active glomerular injury. This study examines the effect of simvastatin on glomerular pathology in a rat mesangial proliferative glomerulonephritis (GN) induced by anti-thymocyte antibody (anti-Thy 1.1 GN). There was no difference in the degree of the antibody and complement-mediated initial injuries between simvastatin-treated and control GN rats. The most pronounced feature of simvastatin-treated GN was the suppression of the early glomerular cell proliferation. The proliferative activity was maximal at day 4 after disease induction (26.5+/-7.0 of proliferating cell nuclear antigen-positive cells/glomerulus); however, approximately 70% of proliferation was suppressed by simvastatin treatment. At day 4 after disease induction, simvastatin administration also decreased alpha-smooth muscle actin expression in the glomerulus, which is a marker for mesangial cell activation. Inhibition of monocyte/macrophage recruitment into glomeruli by simvastatin was also a prominent feature. There was a 30% decrease in the number of glomerular ED-1+ cells by simvastatin treatment at day 2 after disease induction. Furthermore, simvastatin remarkably suppressed subsequent mesangial matrix expansion and type IV collagen accumulation in glomeruli. We also found that the platelet-derived growth factor expression was reduced in simvastatin-treated nephritic rats, which might simply reflect the reduction in mesangial cell proliferation and mesangial cellularity. There was no significant difference in plasma cholesterol or triglyceride levels between simvastatin- and vehicle-treated nephritic rats at day 2 and day 4, which corresponded to the times when simvastatin treatment resulted in a reduction in mesangial cell proliferation. In conclusion, this is the first report to find that mesangial cell proliferation and matrix expansion have been blocked by simvastatin in vivo. The protective effect of simvastatin in the matrix expansion in anti-Thy1.1 GN was partly by inhibition of mesangial cell proliferation and monocyte/ macrophage recruitment into glomeruli, which were independent of a change in circulating lipids.  相似文献   

8.
Hyperlipidemia has been demonstrated to contribute to hypercellularity of the mesangium in experimental animal models of glomerulosclerosis. We studied whether it also has the potential to convert a hypercellular mesangium into a hypocellular one by inducing mesangial cell (MC) apoptosis. Low density lipoprotein (LDL) enhanced (P < 0.001) mouse mesangial cell (MMC) proliferation at lower concentrations (control, 10.3 +/- 0.3 vs. LDL 100 micrograms/ml, 24.2 +/- 0.3 x 10(4) cells/ml) but augmented (P < 0.001) apoptosis at higher concentrations (control, 5.6 +/- 0.5% vs. LDL, 500 micrograms/ml 26.2 +/- 3.4% apoptotic cells/field). Oxidized (OX) LDL enhanced MMC apoptosis in concentrations of 50 to 200 micrograms/dl. There was a direct relationship between MMC apoptosis and oxidation of LDL as judged by measuring thiobarbituric acid reactive species (TBARS). Since superoxide dismutase (SOD) attenuated (P < 0.001) LDL-induced MMC apoptosis, it seems to be mediated through the generation of free radicals by mesangial cells (control, 4.3 +/- 1.5%; LDL, 200 micrograms/ml, 19.4 +/- 0.5%; LDL + SOD, 8.1 +/- 1.3% apoptotic cells/field). LDL also induced a similar effect on human mesangial cells. These studies were further confirmed by DNA fragment assays and ELISA for programmed cell death. LDL treated cells also showed enhanced mRNA expression for RSG-2, a marker for active cell death. These in vitro results provide a basis for the speculation that LDL has the potential to cause an initial hypercellular and subsequent hypocellular mesangium in the course of the development of glomerulosclerosis.  相似文献   

9.
Mesangial cells (MC) of renal glomeruli respond to immune-inflammatory injury by accelerated proliferation and generation of reactive oxygen metabolites (ROM). We studied in vivo and in vitro roles of cAMP-protein kinase A (PKA) signaling in modulation of these pathobiologic processes with focus on PDE isozymes. Mitogenic synthesis of DNA in mesangial cells grown in primary culture was blocked by forskolin and dibutyryl cyAMP. Incubation of MC with PDE-3 inhibitors, cilostamide and lixazinone, inhibited (> 50%) mitogenesis, whereas inhibitors of PDE-4, rolipram and denbufylline, caused little or no inhibition. Conversely, inhibitors of PDE-4 suppressed generation of ROM in MC, whereas inhibitors of PDE-3 had no effect. Incubation of mesangial cells with cilostamide or with rolipram increased in situ activity of PKA, and effects of the two inhibitors were additive. PDE inhibitors also decreased activity of mitogen-activated protein kinase. The efficacy of PDE isozyme inhibitors (IC50) to suppress mitogenesis or ROM generation paralleled IC50 for inhibition of cAMP hydrolysis by extracts from mesangial cells. Administration of lixazinone or lixazinone in combination with rolipram to rats with mesangial proliferative glomerulonephritis induced by antithymic serum suppressed proliferation of mesangial cells and also reduced other histopathologic manifestations of the disease. Based on these observations, we propose that in MC, a cAMP pool that is hydrolyzed by PDE-3 inhibits by negative crosstalk via activation of PKA, mitogen-activated protein kinase (MAPK) pathway, and mitogenesis; whereas cAMP pool linked to PDE-4 inhibits, also via activation of PKA, ROM generation in mesangial cells. Results also suggest that PDE isozyme inhibitors, in particular inhibitors of PDE-3, should be investigated for potential use for "signal transduction pharmacotherapy" of glomerulonephritis.  相似文献   

10.
Since endogenous vasoconstrictors promote mesangial cell growth and increase the biosynthesis of antiproliferative prostaglandins, the effects of cyclooxygenase inhibition on mesangial cell proliferation should be strongly dependent on the prevailing levels of neuroendocrine vasoconstrictors. We compared the effects of indomethacin (10(-6) M), a cyclooxygenase inhibitor, on [3H]thymidine incorporation by cultured rat mesangial cells in the presence of various combinations of angiotensin II (10(-10) M), [Arg8]vasopressin (10(-11) M), (-)-norepinephrine (10(-8) M) and endothelin-1 (10(-11) M). Indomethacin did not enhance [3H]thymidine incorporation in cells treated with each individual vasoconstrictor, or in cells treated with two-way combinations with the exception of modestly increased [3H]thymidine incorporation in cells treated with angiotensin II + (-)-norepinephrine or [Arg8]vasopressin + (-)-norepinephrine. In contrast, in cells treated with any three-way or the four-way combination, indomethacin markedly increased [3H]thymidine incorporation. Importantly, a highly significant interaction (P<0.0001) was observed for thymidine incorporation between the number of vasoconstrictors present and indomethacin treatment, thus demonstrating that cyclooxygenase inhibition reveals a synergistic action of vasoconstrictors on the DNA synthesis in mesangial cells.  相似文献   

11.
12.
The effects of various cytokines on survival and differentiation of an astrocyte progenitor cell line (AP-16) were examined. Epidermal growth factor (EGF) deprivation caused death of AP-16 cells by apoptosis. Transforming growth factor-alpha (TGF-alpha) and basic fibroblast growth factor (bFGF) prevented the apoptosis occurring in the absence of EGF. Leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) induced glial fibrillary acidic protein (GFAP) and decreased A2B5 antigen in AP-16 cells, indicating that these cytokines induced AP-16 cells to differentiate into astrocytes.  相似文献   

13.
The rate of renal filtration is in large part responsible for volume and electrolyte balance in an organism. Integral components of the renal glomerulus are the mesangial cells (MCs), excitable renal pericytes that regulate the glomerular filtration rate by modulating the surface area of the capillaries. Similar to vascular smooth muscle, the signal transduction pathways and ion selective channels regulating isotonic and isometric contraction of MCs are dependent on the voltage-gated Ca influx. During the response to contractile agonists, both Cl and nonselective cation channels play critical roles to depolarize the membrane potential and activate Ca channels. The relaxation pathways involve a negative-feedback mechanism that counteracts mesangial contraction by regulating voltage-dependent Ca signaling. Part of the feedback response involves the activation of plasmalemmal K channels, which hyperpolarize the membrane potential and inhibit voltage-gated Ca entry. This calcium- and voltage-activated feedback K (BKCa) channel shares biophysical, pharmacologic, and molecular properties with the BKCa channels identified in brain and muscle, and with the sio gene product as expressed in Xenopus laevis oocytes. Systemic hormones, such as atrial natriuretic peptide, and paracrine factors, such as nitric oxide (NO), use guanosine 3',5'-cyclic monophosphate (GMP) as a second messenger and enhance the gain in this feedback system by decreasing the voltage and Ca activation thresholds for BKCa. Diabetes mellitus is often associated with high rates of glomerular filtration, mesangial expansion, and secretory abnormalities of the basement membrane. NO-mediated increases in negative-feedback regulation of mesangial tone may attribute, in part, to the pathology of hyperfiltration. Stimulation of inducible nitric oxide synthetase in glomerular MCs by inflammatory cytokines is a possible positive-feedback pathway that contributes to further glomerular destruction. In addition, high ambient glucose, through modulation of BKCa activity, facilitates MC relaxation and thus propagates hyperfiltration. Since cellular arachidonic acid is metabolically linked to extracellular glucose, this fatty acid is a possible mediator of the pathologic actions of hyperglycemia. Clarification of the signal transduction pathways and ionic mechanisms regulating the normal and dysfunctional tones of MCs is essential for rational clinical management of glomerular disease and critical to understanding fluid and electrolyte homeostasis.  相似文献   

14.
BACKGROUND: We assessed the effect of a cytokine inhibitor, compound SKF 86002 (a bicyclic imidazole), on changes in renal hemodynamics (renal blood flow and glomerular filtration rate) that occur acutely following immune injury of glomerular mesangial cells. METHODS: Injury was induced in Munich-Wistar rats by the administration of a monoclonal antibody against the mesangial cell membrane antigen Thy 1.1. An acute drop in renal blood flow (RBF) and glomerular filtration rate (GFR) occurred within one hour of injury. RESULTS: Pretreatment of animals with the cytokine inhibitor SKF 86002 prevented this drop. SKF 86002 had no effect on glomerular synthesis of vasoconstrictor eicosanoids. CONCLUSIONS: The observations indicate that in mesangial cell immune injury, cytokines mediate renal hemodynamic impairment.  相似文献   

15.
Clusterin, a multifunctional protein with complement blocking activity, and fibrin, a product of thrombin's enzymatic activity, are present in the kidney during acute and chronic renal failure. The role of thrombin in regulating clusterin mRNA in the kidney is not known. The effect of thrombin on clusterin mRNA expression was examined in rat glomerular mesangial and glomerular epithelial cells, and cultured human renal proximal tubular epithelial cells by northern blot. Thrombin (10(-8) M) increased clusterin mRNA levels two- to fourfold in glomerular mesangial, glomerular epithelial, and proximal tubule epithelial cells. This was a specific effect of thrombin receptor activation because peptides corresponding to the tethered ligand of the thrombin receptor were also able to increase clusterin mRNA levels. Epidermal growth factor, insulin-like growth factor-1, and transforming growth factor-beta 1 had little or no effect on clusterin mRNA levels. The protein kinase C inhibitor RO-32-0432 (1 microM) inhibited the thrombin-induced increase in clusterin mRNA, suggesting that thrombin receptor activation may regulate renal clusterin mRNA levels through protein kinase C.  相似文献   

16.
BACKGROUND: Cell-matrix interactions exert major effects on such phenotypic features as cell growth and differentiation. Apoptosis is an active form of cell death that is crucial for maintaining the appropriate number of cells as well as the organization of tissue. Recently, it has been suggested that apoptosis of the mesangial cells (MC) is important in glomerular remodeling after injury. The MC are surrounded by an extracellular matrix (ECM) in vivo. Since in disease conditions the mesangial matrix is altered quantitatively and qualitatively, it is of interest to determine whether cell-matrix interactions may influence apoptosis of the MC. METHODS: We first investigated the differences in the susceptibility to apoptotic stimuli of the MC cultured on various ECM components (type I collagen, fibronectin, basement membrane matrix). We then determined whether the inhibition of MC-matrix interactions would affect apoptosis. Finally, interactions between MC and matrix were disrupted by the inhibition of beta1-integrin expression with antisense oligonucleotides (ODN). RESULTS: When MC were cultured on type I collagen or fibronectin and deprived of serum for eight hours, the extracted DNA from the MC demonstrated an internucleosomal ladder pattern on gel electrophoresis that constituted the biochemical characteristic of apoptosis. However, no ladder pattern was apparent when MC were cultured on basement membrane matrix. The attachment of cells was completely inhibited when the MC were cultured on agarose-coated dishes for 24 hours. Gel electrophoresis of DNA extracted from these cells showed a ladder pattern. However, the MC attached to the substratum did not show any apoptosis. MC showed an increase in apoptotic cell death after treatment with antisense ODN against beta1-integrin molecule. CONCLUSIONS: These results indicate that normal ECM may prevent the MC from undergoing apoptosis and serve as a survival factor for MC. Signals from ECM that prevent apoptosis may be mediated by beta1-integrin molecules.  相似文献   

17.
The short-term survival of highly purified embryonic spinal motor neurons (SMNs) in culture can be promoted by many peptide trophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), fibroblast growth factor (FGF), glial-derived neurotrophic factor (GDNF), and hepatocyte growth factor (HGF). We have asked whether these peptides are sufficient to promote the long-term survival of purified E15 SMNs. Contrary to previous reports, we find that when SMNs are cultured in serum-free medium containing a single peptide trophic factor only approximately one-third of the cells survive for 3 d in culture. When multiple factors are combined, additive effects on survival are observed transiently, but by 7 d of culture the majority of SMNs has died. Surprisingly, when cAMP levels are elevated, the majority of SMNs extend processes and survive for 1 week in culture in the absence of peptide trophic factors, even in low-density cultures. A combination of five peptide trophic factors, together with cAMP elevation, promotes the long-term survival of most of the SMNs in serum-free culture for 3 weeks. These findings provide useful culture conditions for studying the properties of SMNs and have implications for the treatment of motor neuron diseases.  相似文献   

18.
Signaling through the c-Ret tyrosine kinase and the endothelin B receptor pathways is known to be critical for development of the enteric nervous system. To clarify the role of these receptors in enteric nervous system development, the effect of ligands for these receptors was examined on rat enteric neuron precursors in fully defined medium in primary culture. In this culture system, dividing Ret-positive cells differentiate, cluster into ganglia containing neurons and enteric glia, and create extensive networks reminiscent of the enteric plexus established in vivo. Glial cell-line-derived neurotrophic factor (GDNF) and neurturin both potently support survival and proliferation of enteric neuron precursors in this system. Addition of either neurturin or GDNF to these cultures increased the number of both neurons and enteric glia. Persephin, a third GDNF family member, shares many properties with neurturin and GDNF in the central nervous system and in kidney development. By contrast, persephin does not promote enteric neuron precursor proliferation or survival in these cultures. Endothelin-3 also does not increase the number of enteric neurons or glia in these cultures.  相似文献   

19.
These experiments were performed in an attempt to determine whether chronic stimulation of glomerular endothelial cells with recombinant human erythropoietin would alter mesangial cell proliferation. Glomerular endothelial cells in culture incubated with various concentrations of erythropoietin for up to 4 days exhibited dose-dependent endothelin-1 production. Moreover, the conditioned medium from erythropoietin-stimulated glomerular endothelial cells enhanced [3H]thymidine incorporation into mesangial cells. This enhancement was significantly attenuated in the presence of a endothelin A receptor antagonist, BQ-123. These results suggest that endothelin-1 mediates erythropoietin-stimulated glomerular endothelial cell-dependent mesangial cell proliferation, resulting in the progression of glomerulonephritis.  相似文献   

20.
Recent studies in both human and experimental chronic renal disease suggest that there is a linkage between glomerular hypertrophy and glomerulosclerosis. To further define these relationships, we studied the changes in glomerular hypertrophy, procollagen alpha 1(IV) mRNA levels and glomerulosclerosis in rats undergoing 1 2/3 nephrectomy (Nx) or sham nephrectomy (SNx). Glomerular hypertrophy, measured biochemically by RNA/DNA and protein/DNA ratios, was significantly increased in Nx compared to SNx two days after subtotal renal ablation (RNA/DNA: Nx = 133 +/- 8%, SNx = 100 +/- 3% of the mean control value, P < 0.01; protein/DNA: Nx = 164 +/- 22%, SNx = 100 +/- 10%, P < 0.05) and remained elevated after 7 and 15 days (RNA/DNA: seven days Nx = 155 +/- 3%, SNx = 100 +/- 13%, P < 0.01; 15 days Nx = 303 +/- 21%, SNx = 100 +/- 24%, P < 0.001; protein/DNA: seven days Nx = 228 +/- 57%, SNx = 100 +/- 18%, P < 0.05; 15 days Nx = 341 +/- 23%, SNx = 100 +/- 18%, P < 0.01). Light microscopic measures of glomerular tuft volume (GTV) were too insensitive to detect glomerular enlargement until 15 days postoperatively, but GTV measured ultrastructurally demonstrated a 20% increment in Nx compared to SNx as early as two days postoperatively (P < 0.01). The latter increment in GTV was due exclusively to glomerular visceral epithelial cell (GVEC) expansion. Glomerular procollagen alpha 1(IV) mRNA levels were significantly elevated only 15 days after nephrectomy (Nx = 265 +/- 58% of the mean control value, SNx = 100 +/- 12%, P < 0.05; corrected for beta-actin mRNA levels). As this time, exuberant mesangial expansion measured ultrastructurally contributed to a 1.6 +/- 0.1-fold increase in GTV (P < 10(-5)), and to a relative decrement in the GVEC contribution to glomerular cells plus matrix (P < 0.01). Segmental sclerosis was observed only 15 days postoperatively in Nx (Nx = 1.3 +/- 0.4% of glomeruli evaluated, SNx = 0.0%, P < 0.05), and there was a strong correlation between the prevalence of segmental sclerosis and the procollagen alpha 1(IV) mRNA levels in Nx at 15 days (r = 0.93, P < 0.01). There was no significant correlation between the RNA/DNA and protein/DNA ratios and procollagen alpha 1(IV) mRNA levels. Thus, glomerular regions responded differentially to subtotal nephrectomy. Early epithelial cell expansion was followed by later mesangial expansion. Glomerular procollagen alpha 1(IV) mRNA levels were elevated only during the second (mesangial) phase of glomerular hypertrophy, when it correlated with glomerulosclerosis, but not during the initial (epithelial) phase, a pattern consistent with a mesangial origin of the procollagen alpha 1(IV) mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号