首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用激光加工结合构筑纳米结构,并涂覆低表面能物质的方法制备了镁合金超疏水表面。使用光学显微镜和扫描电镜观察表面形貌,接触角测量仪测量超疏水表面的静态接触角,电化学分析方法测试试样在模拟生物体液中的腐蚀性能。结果表明:激光加工参数对超疏水表面形貌和性能具有重要的影响。当加工电流为13 A,点阵间距为50μm时,表面微/纳米结构均匀,静态接触角达到最大值161.7°。超疏水试样的腐蚀电位增加,极化电阻增大,腐蚀电流降低,腐蚀速率降低31%,有效提高了WE43镁合金的耐生物体液腐蚀性能。  相似文献   

2.
为研究表面形貌和润湿性对表面摩擦学性能的影响,采用激光加工技术在Ti6Al4V表面加工间距为100μm的网格和点阵微结构,将Si O2纳米粒子涂覆在微结构上构建微纳结构。采用接触角测量仪测量试样的表面接触角和滚动角,采用摩擦磨损实验机(UMT)测试摩擦学性能,采用LEXT OLS4000型3D激光共聚焦显微镜进行表面形貌和磨痕表征。结果表明:在具有微结构的表面涂覆Si O2可制备出具有微纳结构的超疏水Ti6Al4V表面,且网格表面比点阵表面更难以润湿。表面越难以润湿,试样的比磨损率越低,点阵和网格超疏水表面分别将比磨损率降低32.3%和53.8%,且摩擦因数曲线的波动幅度和数值均减小。且具有微纳结构的超疏水表面可显著提高Ti6Al4V的摩擦学性能。  相似文献   

3.
张倩倩  漆雪莲  张会臣 《表面技术》2018,47(11):102-108
目的 研究微/纳米复合超疏水结构的摩擦磨损机制,提高镁合金微摩擦磨损性能。方法 首先采用激光刻蚀获得微米结构,然后表面涂覆SiO2纳米颗粒,获得微/纳米复合结构,最后涂覆低表面能物质获得超疏水表面。用接触角测量仪测量超疏水表面的静态接触角,使用微摩擦磨损实验机分析超疏水表面的摩擦磨损性能,使用扫描电子显微镜观察表面磨痕形貌。结果 当载荷为1 N时,超疏水表面的摩擦系数约为0.04,基体表面约为0.06。随着载荷的增加,超疏水表面的摩擦系数逐渐与基体相近,并逐渐超过基体。随着时间的增加,超疏水表面的摩擦系数呈增加趋势,由0.04逐渐增加到0.08,基体试样没有明显的上升趋势。相同条件下,超疏水表面的磨痕宽度大于基体表面,但磨痕宽度的增大趋势小于基体表面。结论 微/纳米复合结构超疏水表面的摩擦磨损过程不同于光滑基体。超疏水表面的磨损首先发生于微/纳米凸起结构,之后发生于被微/纳米凸起填平的微米凹坑区,然后发生于激光加工热影响区表面,最后发生于镁合金基体。在所受载荷低于1~3 N时,超疏水表面微凸起结构能延缓超疏水表面摩擦磨损的发生,改善耐磨性能。  相似文献   

4.
表面形貌和润湿性对钛合金摩擦学性能的影响   总被引:1,自引:0,他引:1  
为提高钛合金的摩擦学性能,采用激光加工技术在Ti6Al4V合金表面分别构建间距为100和300μm的网格和点阵微结构,将SiO_2纳米粒子涂覆在微结构上制备微纳结构。用接触角测量仪测量试样的表面接触角和滚动角;用LEXT OLS4000 3D激光共聚焦显微镜进行表面形貌和磨痕表征,采用多功能摩擦磨损试验机(UMT)进行摩擦学性能测试。结果表明,具有微结构的表面是符合Wenzel状态的疏水表面,涂覆SiO_2具有微纳结构的表面是符合Cassie状态的超疏水表面。微结构间距100μm的表面的疏水性强于300μm,网格表面疏水性强于点阵。随表面疏水性能的增强,磨痕深度变浅。在50 m N载荷条件下,涂覆SiO_2表面的摩擦系数约为激光加工表面的0.6倍,网格表面的摩擦系数约为点阵的0.8倍。在5 N载荷条件下,涂覆SiO_2减小摩擦系数曲线的波动性。  相似文献   

5.
目的 制备超疏水自清洁的Ti6Al4V合金表面。方法 首先使用飞秒激光在Ti6Al4V合金表面预制备微米级结构,然后将预制备的样品置于1.0 mol/L的氢氧化钠溶液中,在超声水浴状态下进行电化学去合金,获得微纳米复合结构。经表面改性后,得到微纳超疏水钛合金表面。结果 经复合制备的微纳超疏水表面结构由微米级的梯形凸柱阵列,以及通过电化学去合金形成的三维纳米孔洞骨架和沉积的微米或亚微米金属氧化物组成。经过表面改性后,该微纳复合结构表面呈现优异的超疏水性,其接触角可达162.5°,滚动角低至3.4°。自清洁性能测试结果表明,该微纳超疏水钛合金表面展现出优异的低黏附性和自清洁性,1滴水对表面的清洁效率达到99.8%。激光加工参数与静态水接触角之间的关系表明,接触角与扫描间距呈负相关,与能量密度、重复次数呈正相关。结论 飞秒激光结合电化学去合金方法制备的具有微纳结构的钛合金表面呈现出优异的超疏水自清洁性能,通过改变激光加工参数能够有效增大表面的静态水接触角,为后续研究提供了一定参考。  相似文献   

6.
先用电化学刻蚀在铝表面加工出超疏水性所需的微纳米粗糙结构,再通过直流阳极氧化在微纳米结构表面形成氧化层,并在高锰酸钾和硫酸的混合溶液中进行电解着色,最后通过氟硅烷修饰降低表面能后即可获得彩色的铝基超疏水表面。对样品表面的微观形貌、化学成分及润湿性进行了表征,结果表明:当电解加工时间为4 min时,铝表面颜色较暗,其超疏水性一般,水滴与表面的接触角达到153.1°,滚动角为1°;当电解加工时间为3 min时,铝表面为黄褐色,有较好的疏水性能,水滴与表面的接触角达到157.2°,滚动角为1°。  相似文献   

7.
通过简单的盐酸溶液蚀刻方法在2024铝基碳化硅复合材料基体上制备出超疏水表面,电镜观察结果显示,蚀刻后复合材料中碳化硅颗粒自身作为超疏水结构所必需的微米级结构,而碳化硅微粒上又具有纳米级颗粒,形成了类似荷叶表面的微米-纳米二级复合结构。结合氟硅烷修饰,获得了接触角高达157.02°,滚动角5°的超疏水表面。实验研究了不同蚀刻液浓度和时间对表面疏水性的影响,得到特定条件下的最佳工艺参数:盐酸溶液浓度15%(质量分数),蚀刻时间2 min。性能测试结果表明,所制超疏水表面具有较好的抗酸碱性能、稳定性、耐磨性和抗腐蚀性能。  相似文献   

8.
为提高船用铝合金的耐海水腐蚀性能,利用激光在5083船用铝合金表面分别刻蚀点阵、直线、网格3种微结构,采用聚合物基纳米复合材料构建微纳双层结构,制备超疏水船用铝合金表面。采用光学显微镜和扫描电子显微镜表征其形貌;用接触角测量仪测量接触角和滚动角;采用电化学分析方法测试在海水环境中的耐腐蚀性能。结果表明,具有微纳双层结构的超疏水表面符合Cassie状态,且随着微结构间距的增大,接触角减小,滚动角增大,其耐海水腐蚀性能显著增强。间距为100μm的网格微结构表面具有最大的接触角157.8°和最小的滚动角0.57°,可将铝合金的腐蚀阻抗提高2个数量级。  相似文献   

9.
采用激光刻蚀技术在钛合金表面分别构筑网格、直线、点阵3种微结构,采用溶胶-凝胶法将纳米SiO2粒子涂覆在微结构上,制备分别具有微结构/微纳结构的疏水/超疏水表面.利用小球藻附着面积评价表面的抗海洋生物附着性能,利用动态冲刷实验评价小球藻的附着强度.结果显示:具有微结构的疏水/超疏水表面符合Wenzel模型,具有微纳结构的超疏水表面符合Cassie模型,且其表面抗附着性能更优,附着强度更小;网格表面的超疏水自清洁性能最强,抗附着性能最优,附着强度最小,其次是直线,再次是点阵;随着微结构间距的增大,接触角减小,滚动角增大,抗附着性能降低,附着强度增大.  相似文献   

10.
通过化学刻蚀,以硬脂酸为修饰剂,成功实现AM60镁合金表面的超疏水改性,并采用扫描电镜、接触角仪、电化学工作站等对处理前后的AM60镁合金表面的微观形貌、疏水性能和耐腐蚀性能进行分析。结果表明:AM60镁合金仅经盐酸刻蚀处理后,表现为超亲水性,再经硬脂酸浸泡后才达到疏水的效果;随着硬脂酸浸泡时间的增加,该合金的表面接触角呈现先增加后减小的趋势,在浸泡12 h时,接触角最大为150.18°,滚动角小于10°,此时合金表面具有超疏水性能;同时,相比于未处理的AM60镁合金而言,超疏水改性后样品的腐蚀电流密度降低了88.19%,腐蚀电压提高了19.72%,耐腐蚀性能得到明显改善;而且,超疏水改性还可提高合金对粉尘和水溶液的自清洁性能。  相似文献   

11.
羰基铁–环氧树脂基吸波材料疏水结构的制备及性能研究   总被引:1,自引:0,他引:1  
目的 改善羰基铁–环氧树脂基电磁波吸收材料在海洋环境中的耐腐蚀性和电磁波吸收性能。方法 将皮秒激光加工与微细铣削技术相结合,在羰基铁–环氧树脂复合材料表面制备复合疏水微结构,采用单因素实验分别考察了栅格间距为30、20μm时皮秒激光加工功率、扫描速度、扫描次数对所制备表面结构接触角的影响规律,采用扫描电子显微镜对激光加工后的结构形貌进行分析,筛选出疏水性能较好的激光加工参数;选用不同直径的微细铣刀对所筛选的激光参数加工后的表面进行微细铣削,得到复合疏水结构,并采用共聚焦显微镜和光学显微镜观察复合结构的形貌,根据复合结构的疏水性能和加工效率,筛选合适的微细铣刀直径。通过耐腐蚀性能测试对比未处理试样、仅经过皮秒激光加工后试样、仅经过微细铣削加工后试样及复合加工后试样在质量分数为5%的Na Cl溶液中的耐腐蚀能力,采用矢量网络分析仪对比各结构的电磁波吸收能力。结果 当激光加工的栅格间距为20μm,激光功率为3.5 W,激光扫描速度为1 000 mm/s,扫描次数为5时,所得到的表面微结构静态水接触角达到143°;在该表面上使用直径200μm的微细铣刀得到的复合结构接触角达到137.5°,且加...  相似文献   

12.
采用激光加工在Ti6Al4V试样表面加工不同间距的点阵结构,采用自组装技术制备4种自组装分子膜。通过表面形貌和接触角的测量表征试样的表面特性。结果表明:通过激光点阵加工和沉积自组装分子膜,可显著增加Ti6Al4V试样的水接触角。长链分子FDTS、FOTS和OTS制备的自组装分子膜,使Ti6Al4V试样的接触角均大于150?,形成超疏水表面,其中沉积FDTS自组装分子膜时,试样的接触角最大,可达164.5?。沉积短链分子MPS自组装分子膜时,只有当激光加工间距为50μm时,试样方可形成超疏水表面;间距增大后,试样表面变成疏水表面。沉积4种自组装分子膜时,试样的接触角均随激光点阵加工间距的增大而减小。  相似文献   

13.
为了改善镁合金的表面性能,通过对AZ91D镁合金进行表面热扩散渗铝锌混合粉末热处理,得到了AZ91D镁合金表面渗膜层.对AZ91D镁合金表面热处理后得到的渗膜层表面、断面形貌、结构组成、耐腐蚀性能、显微硬度等进行了探讨及试验研究,结果表明:在470℃、6h空冷条件下进行表面热扩散渗铝锌,获得的表面渗膜层比较均匀细致.渗膜层增强了镁合金基体耐腐蚀性能,显著提高了镁合金基体的防护性能,AZ91D镁合金热处理后具有较高的表面显微硬度,扩大了镁合金的使用范围.  相似文献   

14.
结合化学沉积和电沉积技术,以动态氢气泡为模板,在AZ31镁合金表面制备了一种超疏水耐腐蚀的镍基复合涂层。涂层形貌、结构、组成、润湿性和腐蚀防护性能的表征结果表明,电沉积溶液中添加ZnO纳米粒子会改变多孔镍层的表面形貌,影响疏水能力。静态水接触角(WCA)测试表明,电沉积溶液中ZnO纳米粒子的浓度为5.0 g·L-1时获得的电沉积镀层经硬脂酸改性后,具有最大的WCA值,达到160.8°±2.8°。相较于裸镁合金,该复合涂层腐蚀电位显著正移,腐蚀电流密度和电荷转移电阻分别降低和提升两个数量级以上,说明复合涂层对镁合金基底具备良好的腐蚀保护能力。  相似文献   

15.
以AZ91HP镁合金为研究对象,以纳米氧化硅为第二相粒子,通过纳米复合电沉积法制备AZ91HP镁合金Ni-SiO2纳米复合镀层。利用扫描电镜观察纳米复合镀层的显微形貌与微观结构,利用显微硬度计测定纳米复合镀层显微硬度,利用M200摩擦磨损试验机测试纳米复合镀层的耐磨性能。结果表明:在AZ91HP镁合金表面获得了结晶均匀、结构致密的Ni-SiO2纳米复合镀层;纳米复合镀层剖面形貌显示纳米复合镀层与镁合金基体结合良好;镀液中纳米颗粒含量为10g/L时,AZ91HP镁合金表面电沉积Ni-SiO2纳米复合镀层的显微硬度最高,最高达HV367;摩擦磨损试验表明纳米复合镀层与镀镍层、镁合金基体相比,耐磨性明显提高,这是由于纳米颗粒的细晶强化和弥散强化所致;纳米复合镀层的磨损机制主要是磨粒磨损,镁合金基体磨损机制为粘着磨损,镀镍层磨损机制为剥层磨损。  相似文献   

16.
目的 研发一种高效、低成本的激光-热处理复合工艺,制备具有油水分离性能的泡沫铜表面,为石油污染的净化提供一种有效的参考方法。方法 首先利用纳秒激光在泡沫铜表面上诱导出多级微纳米结构,然后将泡沫铜放入低温烘箱中加热处理,通过调控激光参数和热处理相互作用制备出了超疏水超亲油泡沫铜表面,并使用扫描电子显微镜、光电子能谱仪和接触角测量仪,对激光加工前后泡沫铜表面的微纳结构、表面化学元素组成和油水在表面的润湿性进行了表征。结果 泡沫铜表面经纳秒激光加工后诱导生成的多级微纳结构受到包括激光扫描速率、激光加工功率和扫描间距等激光加工参数的显著影响。同时,配合低温热处理工艺,激光制备泡沫铜表面的化学成分快速转变,表面能显著降低,使得泡沫铜表面获得了超疏水超亲油的润湿特性。本工作制备的泡沫铜表面在空气中的最大水接触角为158.5°,油接触角为0°。并利用油水分离试验装置验证了激光-热处理复合工艺制备的超疏水超亲油泡沫铜表面可以使油和水选择性通过,分离效率超过90%。结论 激光-热处理复合工艺制备的具有多级微纳结构的泡沫铜表面具备优异的超疏水超亲油特性,展现出了良好的油水分离性能,有望实现海洋生态中石油污染的净化。  相似文献   

17.
颜兴艳  陈广学 《表面技术》2018,47(3):101-107
目的提出一种在金属表面制备可控的微纳结构的方法,改善金属表面的疏水性。方法利用丝网印刷快速制备可控微细图案,电解加工快速加工出微细结构,化学氧化法制备出纳米结构,从而成功地在铜表面制备了具有微米纳米复合结构的超疏水表面。在此过程中,首先通过丝网印刷辅助电解加工制备有序微圆柱阵列,然后利用化学氧化在微圆柱表面制备纳米结构,通过扫描电子显微镜(SEM)和接触角来表征铜表面的超疏水性能,用质量变化法研究了铜表面的抗结霜性能。结果丝网印刷的圆形掩膜直径为140~160μm,电解加工后,圆柱直径为130~140μm,高度为15μm左右。SEM测试结果表明,用15wt%FeCl_3溶液进行蚀刻,在铜表面出现了圆柱阵列的微纳复合结构。用氟硅烷乙醇溶液改性微纳复合结构圆柱阵列铜表面时,最大接触角为155°,表现出超疏水性能。抗结霜测试表明,所测试的超疏水表面的抗结霜性能显著增强。结论印刷电解法可以制备出形状和尺寸可控的微结构,对微结构进一步处理可得到微纳复合结构。该结构可以构成超疏水表面,且具有抗结霜性能。  相似文献   

18.
为提高钛合金抗海洋生物附着性能,采用激光刻蚀技术在Ti6Al4V合金表面构建不同间距的微米级点阵结构,利用聚合物基纳米复合材料构建微/纳双层结构,制备超疏水Ti6Al4V合金表面。用光学显微镜和扫描电镜表征其形貌;用接触角测量仪测量试样的表面接触角;用浅海挂板的方法测试试样的抗海洋生物附着污损性能。结果表明,具有单一微结构的Ti6Al4V合金表面为疏水表面。随着点阵间距的减小,接触角增大。当间距为50μm时,接触角可达131.8o,但试样的表面滚动角较大,将试样竖直甚至翻转,水滴都不滚落;具有微/纳双层结构的Ti6Al4V合金表面为超疏水表面,且随着点阵间距的减小接触角增大,滚动角减小。当间距为50μm时,接触角达163.8o,滚动角仅为1.89o。具有微/纳双层结构的超疏水Ti6Al4V合金表面抗海洋生物附着污损性能显著优于抛光Ti6Al4V合金表面及具有单一微结构的Ti6Al4V合金表面。  相似文献   

19.
采用激光加工技术在Ti6Al4V合金表面构建点阵微结构,利用自组装分子膜技术在微结构表面沉积低表面能物质,制备疏水/超疏水表面。采用自制测试系统测试液滴在试样表面的静态接触角和滚动角,用高速摄像机拍摄液滴滴落到试样表面的运动过程。结果表明,经激光加工和低表面能修饰可构建Ti6Al4V疏水/超疏水表面,其最大接触角为151.4°,表面静态接触角随点阵间隔的增大而减小;液滴静态接触角与液滴滴落高度相关,同一表面上的液滴静态接触角由最后一次滴落高度决定。液滴滴落到水平试样表面的铺展系数由试样表面粗糙度和静态接触角决定,表面粗糙度和静态接触角越大,液滴铺展系数越小。当滴落高度从0 mm增大到20 mm时,铺展系数的增大幅度约为50%。  相似文献   

20.
采用等离子体反应气相沉积和飞秒激光技术分别对低表面能薄膜和方柱形微结构在钛合金上进行了制备。利用扫描电镜(SEM)对样品的表面形貌进行了表征。使用滴定角法对样品的疏水性能进行了评估。同时也对薄膜材料的力学性能进行了检测,获得了最佳工艺,并将上述2种技术复合,在钛合金上制备了仿生超疏水表面。结果表明:采用低表面能薄膜与微结构复合的方法,可以获得超疏水性能优异的钛合金表面,带有Cu薄膜的方柱形微结构水接触角可以达到156°,滚动角可达到8°。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号