首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用拉伸和硬度测试、扫描电镜和X射线衍射仪等手段,研究了不同Fe含量对挤压铸造Al-3.5Mg-0.8Mn合金显微组织和力学性能的影响。结果表明,Fe能改善合金的力学性能,合金中只存在Al6(FeMn)相。合金的抗拉强度和屈服强度随着Fe含量的增加而增大,伸长率随着Fe含量的增加而降低,原因是随着Fe含量增加,硬脆的Al6(FeMn)相增多。在挤压压力为75MPa和Fe含量为0.5%时,合金的综合力学性能最佳,其抗拉强度为252MPa,屈服强度为128MPa,伸长率为28%。  相似文献   

2.
研究了铜含量对触变Al-6Si-xCu-0.3Mg(x=3,4,5,6,质量分数,%)合金显微组织与力学性能的影响。试样在液相分数为50%时进行触变成形,并对部分样品进行T6热处理。采用光学显微镜、扫描电子显微镜、能谱仪和X射线衍射、硬度和拉伸测试对样品进行表征。结果表明,冷却倾斜板铸造和触变成形工艺能促进铝基体中细小分散的金属间化合物的形成。与硬模铸造相比,合金的力学性能大幅度提高。随着铜含量的增加,触变成形合金的硬度和拉伸强度提高。热处理触变成形Al-6Si-3Cu-0.3Mg合金的抗拉强度、屈服强度和伸长率分别为298MPa、201 MPa和4.5%。而当铜含量增加至6%时,合金的抗拉强度、屈服强度和伸长率分别为361 MPa、274 MPa和1.1%。触变成形Al-6Si-3Cu-0.3Mg合金的失效形式为韧窝断裂,而当铜含量增加至6%时,失效形式为解理断裂。  相似文献   

3.
《铸造技术》2015,(12):2972-2974
以半连续铸造Al-4.2Mg合金为对象,研究了冷轧退火处理工艺对其微观组织和力学性能的影响。结果表明,在冷轧过程中,随着压下率的增大,冷轧板材的抗拉强度和屈服强度逐渐提高,伸长率逐渐下降。冷轧板在经过320℃退火保温l h后,抗拉强度达到220 MPa,屈服强度达到80 MPa,伸长率达到30%。  相似文献   

4.
研究了Al-9Si-x Cu-0.5Ni-0.5Mg压铸合金的力学性能与Cu含量的关系,以及时效热处理对压铸件力学性能的影响。结果表明,在含Cu量为0.6%~1.8%时,压铸件抗拉强度、屈服强度和伸长率均随Cu含量的升高先降低而后保持不变,含Cu量0.6%的合金极限抗拉强度为298.1 MPa,伸长率为5.06%。时效处理较大幅度提高了压铸件的力学性能,最佳时效热处理温度为155℃,时效处理后抗拉强度和屈服强度分别达到360 MPa和278 MPa,比压铸态试样分别提高了20.7%和57.5%,而伸长率降低。  相似文献   

5.
向AZ81镁合金中分别加入0.5%Pb、0.5%Pb+0.5%Sn、0.5%Pb+1.0%Sn合金元素并压铸成型,研究了各成分合金的微观组织和室温、180℃力学性能。结果表明:AZ81-0.5Pb-1.0Sn中存在多边形Mg2Sn,主要分布在晶界;同时,Pb和Sn元素的加入在一定程度上减少了晶界上Mg17Al12的数量,有助于提高镁合金的耐中高温性能;室温下,压铸AZ81-0.5Pb-(0,0.5,1.0)Sn合金抗拉强度和屈服强度随着Sn含量的增加而提高,压铸AZ81-0.5Pb-1.0Sn的抗拉强度为211 MPa、屈服强度为150.5MPa;180℃下,随着Sn含量的增加,抗拉强度和屈服强度均提高,压铸AZ81-0.5Pb-1.0Sn抗拉强度值为200.5 MPa、屈服强度为145.2 MPa;添加元素Pb+Sn使压铸AZ81的180℃断裂机制由塑性断裂向脆性断裂转变。  相似文献   

6.
对压铸AlMgxSi2Mn(x=5.7~7.2)合金的微观组织进行分析,测试力学性能以及疲劳性能,研究镁含量对合金组织和力学性能的影响。结果表明:随着Mg含量的提高,合金屈服强度和布氏硬度分别提高了10.4%和9%,伸长率从8.3%降低至4.5%,抗拉强度则没有明显变化。疲劳寿命随着Mg含量的提高而提高,疲劳极限从57 MPa上升至75 MPa。合金的微观组织主要由α(Al)和Mg2Si相组成,Fe相则以颗粒状的Al3Fe和不规则形状的Al15(Fe,Mn)3Si2存在于晶界。Mn元素的加入也降低合金的粘模倾向。  相似文献   

7.
《铸造》2015,(4)
以Mg-10Zn-4Al-0.3Mn为基体合金,分别加入不同含量的Sr元素,制备了3种合金。试验观察可知,Mg-10Zn-4Al-0.3Mn基体合金的铸态组织由α-Mg基体与沿晶界分布的准晶相Q组成。加入Sr后,亚稳态准晶相Q转变为平衡相τ相Mg32(Al,Zn)49与共晶相ε相(Mg51Zn20)。随着Sr添加量的增加,合金的抗拉强度、屈服强度以及断后伸长率均呈先上升后下降的趋势,有效提高了合金的拉伸性能。当Sr含量为0.3%时,三者均达到最佳值,抗拉强度、屈服强度以及断后伸长率分别达到195 MPa、147 MPa和7.4%,同时平均晶粒尺寸也减小到最小值37μm。  相似文献   

8.
采用拉伸性能和硬度测试、光学显微镜、扫描电镜和X射线衍射仪等手段研究不同Si含量对挤压铸造Al-5.0Cu-0.6Mn-0.7Fe合金显微组织和力学性能的影响。结果表明:当挤压压力为0时,随着Si含量的增加,凝固后期形成的富铁相阻止液相补缩,形成缩松组织,导致合金的抗拉强度、屈服强度和伸长率都下降;当挤压压力为75MPa时,随着Si含量增加,缩松组织消失,虽然细小和分散的α-Al15(Fe Mn)3(Si Cu)2相和Al2Cu相数量增多,但Al6(Fe Mn Cu)相消失,有利于晶界强化和阻止裂纹的扩展,使得合金的抗拉强度和屈服强度增加;虽然富铁相数量的增加使得合金伸长率降低,但挤压铸造工艺减缓了伸长率降低的趋势。当挤压压力为75 MPa和Si含量为1.1%(质量分数)时,合金的综合力学性能最好,其抗拉强度为232 MPa,屈服强度为118 MPa,伸长率为12.4%。  相似文献   

9.
利用SEM和XRD及拉伸试验机研究了不同Sn含量对铸态Mg-x Sn-3Al-1Zn(x=3,4.5,6,7.5)合金组织和性能的影响。结果表明,Sn元素的增加可使合金晶粒细化;合金中的析出相Mg2Sn的数量随Sn含量增加明显增多,其尺寸也随Sn含量的增加而增大,并且当Sn添加量超过6 wt%时Mg2Sn相从颗粒状转变为长条状且沿晶界分布。在Sn含量为6wt%时合金的拉伸性能最佳,抗拉强度为222.5 MPa,屈服强度为76.2 MPa,伸长率为16%。  相似文献   

10.
试验研究了Sc和Zr复合微合金化对Al-4Cu-1.5Mg合金铸态显微组织与力学性能的影响规律。结果表明,复合添加微量Sc和Zr,有效改善了合金铸态微观组织,细化了合金晶粒,使粗大的树枝晶转变为均匀细小的等轴晶。当Sc、Zr含量分别为0.4%和0.2%时,合金的抗拉强度、屈服强度及伸长率分别为275.0MPa、176.0MPa和8.0%,与未添加合金元素的Al-4Cu-1.5Mg合金相比,抗拉强度提高了55.3%,伸长率提高了近3倍。  相似文献   

11.
采用低真空压铸AlSi10MgFe合金,对铸件实施高温短时热处理时表面不鼓泡,尺寸稳定,当Mg含量为2.1%时,其伸长率达到了6%;铸态下,铸件的抗拉强度随Mg含量的增加而提高,Mg含量为0.65%时,其屈服强度增加为163MPa;Mg含量为0.89%时,人工时效后合金的抗拉强度达到了356.2 MPa。  相似文献   

12.
对Al-1Si-0.3Mg和Al-7Si-0.3Mg合金在-80~20℃拉伸过程中的断裂行为进行研究。结果表明:随着温度的降低Al-1Si-0.3Mg合金的抗拉强度、屈服强度及伸长率均呈上升趋势;Al-7Si-0.3Mg合金的抗拉强度和屈服强度上升,伸长率却明显下降;拉伸过程中Al-1Si-0.3Mg合金中位错在晶界塞积,易使相邻晶粒内位错源启动,使合金具有较高的塑性;Al-7Si-0.3Mg合金的位错在Si相边界塞积,使相邻晶粒内位错源难以启动,从而造成合金具有较高的强度。  相似文献   

13.
《铸造》2014,(12)
对汽车用高强韧压铸Al-5Mg-2Si-Mn合金的微观组织和力学性能进行了研究。结果表明,Al-5Mg-2Si-Mn合金压铸组织主要包括:枝晶和颗粒状的大尺寸α1-Al晶粒,细小圆整的α2-Al晶粒以及[Al+Mg2Si]共晶区,共晶区比例约为30%。压铸件存在组织不均匀性,在铸件的表面观察到厚度为50~80μm的表面层,在表面层与内部组织之间则被表面边界层分开。压铸圆棒试样的铸态抗拉强度、屈服强度和伸长率分别达到350 MPa,204 MPa和13.8%,断口上则存在大量的解理台阶结构。  相似文献   

14.
Nd在挤压态AZ31镁合金中的行为及作用   总被引:1,自引:0,他引:1  
通过金相显微镜、SEM和XRD观察研究挤压态AZ31-xNd镁合金的微观组织和析出相,并测试合金的室温和高温力学性能。结果表明:Nd在合金中以Al2Nd和Mg12Nd化合物形式存在,且随着Nd量的增加,其数量增加;Nd使合金的晶粒细化、室温和高温性能提高。加入0.6%Nd的合金晶粒尺寸由未加Nd时的26μm降至约10μm,加入0.6%Nd合金的室温抗拉强度、屈服强度和伸长率分别为325MPa、247MPa和18.1%。含Nd合金的抗拉强度和屈服强度随温度升高而下降,而伸长率随温度的升高而增加。  相似文献   

15.
研究了稀土Nd元素对Al-7Si-0.3Mg合金的低温拉伸性能及其断裂行为的影响。结果表明拉伸温度对铸造Al-7Si-0.3Mg的拉伸性能有显著影响,在低温(-60℃)下拉伸,合金的强度提高但伸长率降低。随着Al-7Si-0.3Mg合金中Nd含量的增加,合金在低温(-60℃)下的屈服强度、抗拉强度和伸长率呈现先升高后降低的趋势。Nd元素含量为0.2wt.%时合金力学性能达到最高值,这是由于Nd对组织细化和Si相的变质作用;当合金中Nd含量分别大于0.4%和0.8%后,组织中会形成棒状Al_4Nd相和片状Al_2NdSi_2相,这些脆性相在拉伸时割裂合金基体,使合金的低温拉伸性能降低。  相似文献   

16.
采用金相电镜、扫描电镜、EDS能谱分析、拉伸性能测试与JMat-Pro材料仿真软件等测试分析手段,研究了Al-6.5Mg合金铸态与退火热处理态下的微观组织与力学性能。结果表明,Al-6.5Mg合金铸态晶粒尺寸约为90μm,平均抗拉强度、屈服强度、伸长率与断面收缩率分别为228 MPa、131.7 MPa、31.9%与39%,铸态断口形貌呈现为典型的韧窝断裂。经500℃×24h与520℃×24h退火热处理后,合金材料的屈服强度、伸长率与断面收缩率保持不变,抗拉强度分别提升了23.2%与24.2%,为281MPa与283MPa,断口形貌仍呈现为韧窝断裂;受退火过程热力学驱动,晶粒内部与晶界处的Mg元素摩尔分数略有增加。  相似文献   

17.
《铸造》2015,(9)
通过金相观察(OM)、扫描电镜观察(SEM)、能谱分析(EDS)、拉伸试验研究了Gd元素含量对砂型铸造Mg-Gd-Y系合金微观组织和力学性能的影响,并引入WE54合金作为对比。研究表明:Mg-Gd-Y系合金的铸态组织主要由等轴树枝晶α-Mg固溶体、晶界处孤岛状共晶相Mg24(Gd,Y)5以及孤立的方块相Mg5(Gd,Y)和起到晶粒细化作用的富Zr核心组成。随着Gd含量的增加,晶界处第二相Mg24(Gd,Y)5的体积分数明显增加,导致合金的抗拉强度和屈服强度不断提高,伸长率却不断降低。GW94合金强度最好:室温下抗拉强度和屈服强度最高分别可达213.7 MPa和156 MPa,伸长率却仅为1.29%。WE54合金的伸长率最高,这可能与铸态WE54合金晶界处形成的相互平行的片层状共晶相有关。Mg-Gd-Y系合金和WE54合金断裂机制都为准解理断裂。  相似文献   

18.
官鑫  薛林涛 《铸造技术》2018,(3):543-545
通过OM、SEM、T6热处理、拉伸性能测试等方法,研究了Cu、Mg等合金元素对Al-Si-Cu-Mg合金微观组织与力学性能的影响。研究表明,Al-Si-Cu-Mg合金中,Al_2Cu和Q-Al_5Cu_2Mg_8Si_6是主要强化相。Cu、Mg含量增加可以很大程度提高Al-Si合金的强度,但合金的伸长率会降低。经T6(520℃×10 h固溶+170℃×6 h时效)热处理,Al-Si-Cu-Mg合金的强度与韧性均有所提高,当Cu/Mg为4时,抗拉强度、屈服强度及伸长率分别达到426.7 MPa、294.9 MPa和6.3%。  相似文献   

19.
研究不同镁含量对触变成形A319合金显微组织和拉伸性能的影响。合金在含50%液相时进行触变成形,并对部分合金进行T6热处理。采用光学显微镜、扫描电子显微镜、能量散射谱、X射线衍射和拉伸试验对合金进行表征。结果表明,镁可以细化合金中共晶硅。当镁含量为1.0%和1.5%时,合金中形成致密的Al9Fe Mg3Si5相。随着镁含量的增加,触变成形合金的拉伸强度增加。热处理后的触变成形A319合金的抗拉强度、屈服强度和伸长率分别为298 MPa,201 MPa和4.5%。而对于添加1.5%Mg的触变成形A319合金,其热处理后的抗拉强度、屈服强度和伸长率分别为325 Pa、251 MPa和1.4%。触变成形A319合金表现为韧窝断裂,而添加1.5%Mg的A319合金表现为混合断裂,在合金表面可观察到韧窝断裂和解理断裂。  相似文献   

20.
选择AZ31、AZ61和AZ91镁合金,通过加入不同含量的铈元素,系统研究了铈元素对镁-铝-锌系镁合金的热变形行为、相组成、微观组织结构和力学性能的影响.实验表明,添加Ce元素后,形成的Al4Ce对合金有强化作用,但其铸态组织仍然粗大,需要经过轧制及退火,合金组织才能得到改善.力学性能测试结果表明,随Ce含量的增加,轧制态合金强度上升,伸长率有所提高.添加铈的8#合金有最高的强度,轧制态,其抗拉强度为350 MPa,屈服强度为274 MPa,伸长率为6.2%;退火后,抗拉强度、屈服强度和伸长率分别为306.1 MPa、201.4 MPa和18.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号