首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了探究磷冲击负荷对活性污泥系统特性的影响,采用厌氧-好氧运行的SBR进行试验,通过改变进水磷含量,研究了在进水碳磷比(质量浓度的比)为330/8、330/12、330/16和330/20的条件下活性污泥系统的污染物去除特性、污泥沉降性等方面的表现。结果表明:碳磷比降低会强化聚磷菌活性,改善污泥沉降性,显著提高系统的脱氮除磷性能。当进水碳磷比由330/8改变至330/20时,系统好氧段比吸磷量由9.502 mg/g增加到了17.764 mg/g,提升了86.95%。在磷浓度升高冲击作用下,聚磷菌厌氧释磷会吸收更多的有机物,试验出水水质得到提升。厌氧期间pH值下降速率与释磷速率显著相关(R2为0.667),pH值曲线反映了系统中厌氧生物呼吸的特征。氧化还原电位(ORP)在厌氧阶段不断下降,在好氧阶段出现了2个平台期,通过在线监测ORP变化可以指示出PO43--P的质量浓度变化过程,并可确定厌氧释磷结束的时间点。在进水化学需氧量(COD)不变时,提高进水磷浓度可以使微生物活性增强,污泥沉降性能和系统脱氮除磷性能提高,给活性污...  相似文献   

2.
纪庄子污水处理厂反硝化聚磷菌作用初探   总被引:8,自引:0,他引:8  
人们已经认识到反硝化聚磷茵(DPB)也是一种很重要的除磷茵.为了有效地评价除磷脱氮工艺,有必要研究污泥中微生物的特性.笔者在试验中所用污泥混合液取自纪庄子污水处理厂,对反硝化除磷茵(DPB)厌氧释磷、好氧/缺氧吸磷行为进行了可行性研究,比较了好氧除磷污泥与缺氧除磷污泥中微生物的不同特性和不同除磷活性.  相似文献   

3.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

4.
目的研究多级厌氧、好氧、缺氧交替SBR新型反应器进行脱氮除磷的启动过程.方法采用接种法培养活性污泥,注入待处理污水,固定装置运行周期,通过调整厌氧、好氧、缺氧时间分配和交替次数对SBR工艺脱氮除磷效果进行研究.结果SBR工艺的运行参数为厌氧(含进水)1.5 h→好氧2 h→缺氧1.5 h→好氧0.5 h→缺氧1 h→好氧0.5 h→静置沉淀1 h,好氧的总时间为3 h,缩短了2 h,节约了40%的曝气量.对COD、TN、TP的平均去除率均已高达97.34%、90.78%、92.14%.污泥容积指数SVI由接种污泥的198.1降至最终污泥培养驯化第Ⅳ阶段的71.结论温度控制在(23±2)℃条件下,采用接种法培养驯化活性污泥2个月就能完成污泥培养驯化,满足污水处理要求.  相似文献   

5.
SBR法处理低碳源城市污水除磷脱氮效果及规律研究   总被引:6,自引:0,他引:6  
介绍了用SBR法(序批式活性污泥法)处理低碳源城市污水,研究了生物除磷效果和好氧反硝化脱氮效果及其影响因素.试验结果表明,磷的出水质量浓度低于0.8mg/L,去除率达到92%~98%;磷的厌氧释放是好氧吸收的前提条件,而且厌氧释磷量和好氧吸磷量存在线性关系;DO是影响好氧反硝化的主要因素,当DO=2mg/L时,总氮的去除率最大.  相似文献   

6.
DO对除磷过程的长期影响   总被引:6,自引:0,他引:6  
为研究溶解氧(DO)对除磷过程的长期影响,采用序批式间歇反应器(SBR),通过设置好氧阶段DO的不同(5.5~7.0 mg/L和0.5~1.5 mg/L),系统地考察长期运行在这两种DO水平下强化生物除磷系统(EBPR)除磷过程的特点.结果表明:在pH 7.2~7.6,温度(23±0.5)℃时,高DO对放磷和吸磷两个阶段均会产生负面影响.其厌氧阶段的放磷量比低DO情况下要少43.08%.吸磷过程在好氧阶段初始30 min内进行得最快,该期间内高低DO污泥的最大比吸磷速率分别为6.27和11.45 mg.g-1.h-1,前者比后者少45.24%.分析认为,过度曝气导致的聚磷菌体内聚β羟基丁酸盐(PHB)的不足和过多的进水碳源被用作反硝化,是本试验高DO状态下除磷性能恶化的主要原因.高DO在抑制丝状菌膨胀方面并不比低DO占有明显的优势,污泥除磷性能的改善往往伴随着污泥沉降性的好转.  相似文献   

7.
用不同声能密度(0,0.05,0.1,0.15,0.2,0.3 W/mL)的超声波对同步硝化内源反硝化除磷(SNEDPR)系统进行周期性辐照,通过考察系统的脱氮除磷效果、污泥性能、微生物活性和胞内物质转化,研究超声波声能密度对SNEDPR系统的影响.结果表明,声能密度为0.1 W/mL时除磷效果最好,出水PO_4~(3-)-P浓度平均为0.27 mg/L.超声组反应器的污泥浓度较对照组低29%~38%,出现污泥减量现象.以亚硝酸盐作为电子受体的比吸磷速率在0.10 W/mL时达到最大为5.47 mg PO_4~(3-)-P/g MLSS·h.声能密度为0.10 W/mL的厌氧阶段ΔPoly-P/ΔHAc在各组中最大为0.57,表现出超声波对PAO的强化.厌氧阶段的Poly-P和释磷量的变化显示超声波能够有效降低无效释磷及"溶磷"现象.  相似文献   

8.
通过3个序批式反应器(SBR)的连续运行,研究了污水不同起始pH值对强化生物除磷系统(EBPR)的影响(SBR1:pH=6.5;SBR2:pH=7.0;SBR3:pH=7.5).结果表明:随着pH值的提高,厌氧释磷量和好氧吸磷量都逐渐增加,释磷速率和吸磷速率也在增加;除磷效率分别为82.69%、93.87%和98.50%.运用荧光原位杂交技术(FISH)鉴定EBPR中的功能菌为聚磷菌(PAO)并计算出其含量,即SBR3>SBR2>SBR1,得到在一定的pH值范围内pH值越高聚磷菌的含量越高.比较不同pH值下EBPR系统中脱氢酶活性的变化规律,在pH=6.5~7.5范围内,脱氢酶的活性随着pH的增加而线性增加,表明较高的pH有利于PAO的生长和提高PAO的活性,从而提高了除磷效率.因此,通过控制污水起始pH值的方法可以达到显著提高强化生物除磷效果的目的.  相似文献   

9.
活性污泥长期好氧饥饿下的微生物种群结构演化   总被引:2,自引:0,他引:2  
为考察好氧饥饿环境对活性污泥硝化及除磷性能的影响,研究活性污泥在长期好氧饥饿条件下的微生物种群结构变化,以具有良好硝化和除磷性能的活性污泥为实验对象,利用Illumina高通量测序平台分别考察活性污泥好氧饥饿处理3,7,14和30 d后的微生物种群结构特性及差异.结果表明:好氧饥饿时间越长,活性污泥硝化及除磷性能所受的影响越大,污泥的种群结构变化越明显.硝化菌和除磷菌等相关功能细菌在短期(7 d)好氧饥饿过程中,可分别利用细菌衰亡裂解释放的氨氮和胞内储能物质进行细胞维持,确保系统硝化及除磷性能的恢复,同时恢复期氨氧化菌快于亚硝酸氧化菌的活性恢复速率促进了系统由全程硝化向短程硝化的转变;而随着好氧饥饿时间的延长,功能细菌的种群丰度均逐渐减少.此外,活性污泥微生物种群结构在30 d好氧饥饿过程中经历了一个动态变化过程,既有优势种群(如Proteobacteria和Bacteroidetes等)的逐步消亡,又有适应好氧饥饿环境的菌种(如Firmicutes)增强成为新的优势菌群.  相似文献   

10.
亚硝酸盐氮对生物除磷系统的影响   总被引:1,自引:0,他引:1  
为全面评价亚硝酸盐氮对生物除磷系统的影响,采用两个SBR系统,模拟厌氧/好氧及厌氧/缺氧(以硝酸盐氮为电子受体)除磷系统,分别考察亚硝酸氮对二者的影响.结果显示:亚硝酸盐氮对好氧除磷系统的影响远大于缺氧除磷系统,亚硝酸盐氮对好氧和缺氧除磷在每克挥发性悬浮固体加入0.88和6.72 mgNO 2--N时会对生物活性产生抑制.同时发现在以硝酸盐氮为电子受体的反硝化除磷基础上采用逐渐增加亚硝酸氮质量浓度的方法驯化聚磷污泥,可以增加污泥对亚硝酸盐氮的适应性,并最终可以选择亚硝酸氮作为唯一电子受体吸磷,但其除磷效率低于以氧和硝酸盐氮为电子受体的除磷系统.  相似文献   

11.
以SBR反应器在厌氧/好氧条件下培养的活性污泥为对象进行批次试验,研究了不同浓度NO-2-N对缺氧吸磷的影响.结果表明NO-2-N可以作为缺氧吸磷的电子受体,但吸磷速率和吸磷量均低于好氧吸磷.反应开始时的NO-2-N浓度对反应过程影响很大,本次试验中NO-2-N浓度为20 mg·L-1时缺氧吸磷量和吸磷速率达到最高,低于该值时吸磷量和吸磷速率随着NO-2-N浓度的提高而增加,但会出现"二次释磷"现象;高于该值时吸磷量和吸磷速率随着NO-2-N浓度的提高而减少;NO-2-N浓度达到80 mg·L-1时没有发现对吸磷过程的抑制作用;反应器在厌氧/缺氧条件下连续运行,DPB的释磷和吸磷能力很快丧失.  相似文献   

12.
为了研究单级好氧除磷工艺的影响因素,采用序批式间歇反应器(SBR),通过设定不同的反应时间和进水碳磷比(质量比),考察了单级好氧过程中PO_4~(3-)-P浓度、聚-β-羟基丁酸盐(PHB)以及DO、ORP等参数的变化.结果表明,在DO浓度低于0.6 mg/L的单级好氧系统中,存在着稳定的生物除磷现象.进水末期污泥中的PHB含量与放磷量近似成正比,且适当地缩短反应时间有助于强化除磷效果.碳磷比与除磷的关系比较复杂,当PO_4~(3-)-P浓度恒定时,增加碳磷比可显著强化放磷和吸磷过程;当碳源浓度恒定时,增加碳磷比对强化除磷的作用有限.ORP的变化趋势能够清楚地指示除磷的过程,当ORP小于-150 mV时,系统会发生显著的磷释放.在低溶解氧环境下,传质受限产生的厌氧微环境是发生单级好氧生物除磷的重要原因.  相似文献   

13.
目的 考察间歇式生物接触氧化反应器(SBCO)的除磷性能.方法 在系统稳定运行条件下,调节原水CODCr质量浓度,以及采用形成CODCr的不同基质模拟污水,考察除磷效果.结果 由葡萄糖形成的原水CODCr质量浓度低于500 mg · L-1时,总磷的去除率随着CODCr的增加而提高,而当CODCr质量浓度超过500 mg · L-1时,总磷的去除率开始逐渐下降.以乙酸钠为基质的污水,厌氧释磷速率和释磷量最大,好氧吸磷速率和吸磷量也最大,除磷效果好.其次为葡萄糖-乙酸钠联合基质,再次为葡萄糖,最后是蛋白胨.结论 CODCr质量浓度对间歇式生物接触氧化反应器的除磷效果有直接影响,并且其除磷效果与形成CODCr的基质有关,简单的有机酸类基质污水,除磷效果较好.  相似文献   

14.
为丰富低温污水脱氮除磷途径并了解碳源对A2O工艺反硝化除磷的影响程度,采用单独的乙酸钠、丙酸钠及其混合物对A2O工艺处理低温污水时厌氧释磷与缺氧反硝化吸磷过程进行研究.结果表明,在水温为10~12℃、HRT为8 h、污泥回流比为50%和硝化液回流比为150%~250%的条件下,不同碳源时厌氧释磷与缺氧吸磷速率差异较大....  相似文献   

15.
SBR工艺强化反硝化除磷及控制参数   总被引:2,自引:0,他引:2  
采用SBR反应器,通过在厌氧—好氧运行模式(Ⅰ)中介入缺氧段,即厌氧—好氧—缺氧—好氧运行模式(Ⅱ),缺氧与好氧条件下磷的吸收量的百分比值由28.2%升高至68.3%,实现了反硝化同步除磷、脱氮.系统稳定运行了90个周期,ρ(COD)、ρ(PO_4~(3-)-P)、ρ(TN)平均去除率分别为92.0%、98.0%、81.5%.通过间歇实验发现,ρ(NO_2~--N)=30mg/L时,NO_2~--N对反硝化吸磷并无影响,并且能作为电子受体,与NO_3~--N相比,反硝化吸磷速率更快.实验对pH值、E_(ORP)进行在线检测发现,厌氧阶段E_(ORP)曲线上的拐点对应磷的释放终点;好氧阶段ⅠE_(ORP)和pH值曲线上的拐点则对应着硝化终点;缺氧阶段pH值的拐点对应反硝化终点;好氧阶段ⅡE_(CRP)和pH值的拐点分别对应COD降解和吸磷终点.因此,pH值、E_(ORP)能作为实时控制参数,来提高脱氮、除磷效率.  相似文献   

16.
污泥厌氧发酵物强化低碳氮比生活污水脱氮除磷   总被引:1,自引:0,他引:1  
为降低使用污泥厌氧发酵物作碳源时的成本,以及简化使用步骤,研究将既不进行发酵液与污泥的分离,也不去除副产物氮和磷的污泥发酵物直接作生活污水脱氮除磷碳源的可行性.以实际低碳氮比城市生活污水为处理对象,将不同量的污泥碱性发酵物(0,20,50,100,200 mL,对应的SCOD质量依次为0,79,198,396,792 mg)作为生物反硝化脱氮和厌氧释磷的碳源,考察脱氮和释磷情况.结果表明:随着投加量的增加,反应结束时氮氧化合物(NO~-_x-N)先降低后升高,当投加量为50 mL(SCOD质量为198 mg、氮质量为12.9 mg、碳氮比为15.3)时,NO~-_x-N质量浓度最低,仅为1.2 mg/L且全部以NO~-_2-N的形式存在,对应的反硝化效率为94.9%;厌氧释磷过程随着污泥发酵物投加量的增多,释磷量不仅没有升高,反而会降低,当投加量为20 mL(SCOD质量为79 mg、氮质量为5.2 mg、磷质量为1.6 mg、碳氮比为15.3、碳磷比为49.5)时,反应结束时释磷量最多,高达23.8 mg/L.此外,通过模拟硝化过程、反硝化过程以及鉴定细胞形态,得出污泥发酵物中硝化细菌和反硝化细菌的细胞结构遭到破坏,其活性均被抑制,即发酵物的引入不影响污水脱氮除磷系统主要菌群结构的稳定性.因此,污泥厌氧发酵物直接做生活污水脱氮除磷的碳源是可行的,本研究中对于反硝化脱氮,50 mL为最佳投加量,对于厌氧释磷,20 mL为最佳投加量.  相似文献   

17.
MBR-厌氧/缺氧交替工艺处理生活污水的试验研究   总被引:1,自引:0,他引:1  
提出一种提高生活污水脱氮除磷的交替式厌氧/缺氧-膜生物反应器(A—A/A—M)工艺.该工艺由一个交替缺氧/厌氧反应池和内置膜过滤单元的好氧池组成.通过改变好氧池底部回流污泥流向使缺氧和厌氧环境在两个独立反应器(A和B)内依次形成,以实现同步缺氧反硝化脱氮、厌氧释磷及反硝化聚磷菌的部分吸磷等过程.好氧反应器采用连续曝气方式实现硝化、过量吸磷及膜污染的控制.结果表明:A—A/A—M工艺可以实现污染物的高效去除,对COD,TN,TP的平均去除率分别达到93%,67.4%和94.1%.  相似文献   

18.
研究了亚硝酸盐作为电子受体对反硝化除磷系统的影响。在实验室模拟SBR反应器,在厌氧/缺氧交替运行方式下,利用模拟生活废水,分别选取不同浓度的亚硝酸盐作为电子受体进行反硝化除磷系统的培养和驯化,对不同亚硝酸盐浓度下反硝化除磷系统的反硝化率以及反硝化吸磷率等因素进行了交叉对比分析。结果表明:在经过长期驯化的条件下,在合适的NO-2-N浓度范围内,DPB能以NO-2-N为电子受体进行反硝化除磷,抑制浓度为15 mg/L;在低于15 mg/L的浓度范围内,NO-2-N的消耗量以及反硝化速率随着起始NO-2-N浓度的增大而增加,在15 mg/L之后又随着其浓度的增大而降低;5~15 mg/L NO-2-N浓度下的释磷速率以及吸磷量增加得尤为明显,15 mg/L浓度下出现了类似反硝化速率的拐点曲线,在15 mg/L浓度时释磷量和吸磷量均为最高。由此可得本实验中NO-2-N的抑制浓度为15 mg/L,缺氧吸磷量与厌氧释磷量有着比较好的线性关系,拟合的直线方程为y=0.580 6+1.697 4x,两者具有线性的相关关系。  相似文献   

19.
UniFed SBR 工艺对生活污水除磷的研究   总被引:1,自引:0,他引:1  
鉴于UniFed SBR工艺具有进水/排水/沉淀阶段同步进行、底部进水、顶部出水及反应器保持恒水位状态等特点,此工艺具有良好的生物除磷脱氮性能.本试验采用厌氧/缺氧/好氧交替运行的UniFed SBR反应器.考察了不同进水碳磷比ρ(C)/ρ(P)值、排水比、最大除磷负荷及曝气量对于系统生物除磷效果的影响.结果表明,对于不同进水ρ(C)/ρ(P)值,分别得到相应的释磷和吸磷速率,当ρ(C)/ρ(P)=23时,系统的出水磷质量浓度为0.89 kg/m~3,去除率为94.67%,当ρ(C)/ρ(P)>23时,可使出水磷质量浓度为零,说明此工艺独特的运行方式适用于低ρ(C)/ρ(P)值生活污水的深度除磷;当进水ρ(COD)成为释磷的限制因素时,随着排水比的增大,出水ρ(P)降低,但当进水ρ(COD)充足时,排水比对于磷的去除影响不大,均能保持较高的去除效率.该工艺独特的运行方式使其在实际操作中达到了很好的除磷效果,并为强化生物除磷提出了新思路和新方法.  相似文献   

20.
为探讨EGSB厌氧颗粒污 泥培养好氧颗粒污泥的工艺, 在SBR反应器中以葡萄糖为碳源,EGSB厌氧颗粒污泥为接种污泥,好氧条件运行.观察污泥颗粒形态、结构变化 ,监测COD,TP,TN,SS,研究厌氧颗粒污泥培养好氧颗粒污泥的过程.研究发现此过程中厌氧颗粒污泥起了一种载体作用.污泥浓度、粒径先 降低后增加,沉降性能先降低后提高,45?d后逐渐稳定.培养出的好氧颗粒污泥与接种颗粒污泥相比在粒径、结构等方面有一定变化.稳定后 的颗粒污泥具有良好的脱氮除磷功能,COD去除率稳定在94%左右,TP去除率80%以上,TN去除率75%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号