首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过半固态机械搅拌+陶瓷刀剪切法,利用SiO_2粉末与Al-7Si铝合金反应制备Al_2O_3颗粒增强Al-8Si基复合材料。借助金相显微镜(OM)、扫描电镜(SEM)对该复合材料的微观组织进行分析。结果表明:Al2O3在Al-8Si合金的晶界处的分布均匀分散。复合材料中的α-Al由树枝晶向等轴晶转变。同时,Al_2O_3颗粒周围的共晶硅转变为细小的块状。  相似文献   

2.
为制备相互贯通Al_2O_3/Al复合材料,采用有机泡沫浸渍法和浇注成型法制备SiO_2陶瓷,真空消失模铸造法将铝浸入泡沫陶瓷中、将SiO_2陶瓷埋入Al粉分别获得SiO_2/Al复合材料,对复合材料进行高温热处理。考察硼酸添加剂对SiO_2陶瓷性能和硼酸、温度对原位反应的影响,以及复合材料的组织演化。结果表明,硼酸的添加有利于SiO_2陶瓷致密度与抗弯强度的提高,并对原位反应有促进作用。随温度升高,SiO_2与Al之间的反应层厚度急剧增加。SiO_2泡沫陶瓷和Al原位反应生成Al_2O_3与Si,生成的Al_2O_3骨架由颗粒状Al_2O_3及连续网状Al_2O_3构成,保持了SiO_2泡沫骨架的原有结构;反应生成的Si进入到Al基体中形成了Al-Si合金。  相似文献   

3.
采用放热弥散法,利用Al和纳米SiO_2混合粉末,原位制备了纳米α-Al_2O_(3p)/Al复合材料。用X射线衍射仪、扫描电镜、差示扫描量热法以及能谱仪分析了复合材料的组织组成,并研究了该体系的反应机理。结果表明,Al-纳米SiO_2体系经900℃保温30 min可以反应完全,生成纳米Al_2O_3和Si,其中纳米Al_2O_3的体积分数可达7%且在铝基体上均匀分布;该体系的反应激活能随着反应的进行不断提高,说明在该体系化学反应的最后阶段必须提供足够能量,才能保证反应进行完全。  相似文献   

4.
以Ti_3SiC_2粉末为增强体,Al-4Si合金作为基体,通过半固态工艺制备了5%(质量分数)Ti_3SiC_2/Al-4Si复合材料。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)等研究了半固态制备5%(质量分数)Ti_3SiC_2/Al-4Si复合材料的界面反应对其组织及性能的影响。结果表明,在半固态制备过程中Ti_3SiC_2与Al-4Si基体发生界面反应生成了Al_3Ti、TiC、Al_4C_3物相,Al_3Ti及TiC颗粒分布在晶界处;复合材料硬度约为46.8 HV0.3,相比Al-4Si基体合金硬度略微提高;与Al-4Si基体合金相比,界面反应产生的第二相颗粒显著改善复合材料的摩擦学性能,摩擦系数为0.263,磨损量为0.0069 g。  相似文献   

5.
采用半固态机械搅拌结合高速剪切工艺,以亚微米SiO_2颗粒与熔体原位反应制备了不同MgAl_2O_4体积分数(0.5%、1%、2%、3%)的亚微米MgAl_2O_4(P)/Al-Mg-Si复合材料,分析了该复合材料的显微组织及相组成,并研究了MgAl_2O_4体积分数对该复合材料显微组织及拉伸性能的影响。结果表明:亚微米SiO_2颗粒与基体合金原位反应生成粒径相似的亚微米MgAl_2O_4颗粒,基体则由α-Al、Mg_2Si及Si相组成。MgAl_2O_4颗粒对α-Al晶粒具有细化作用。随MgAl_2O_4体积分数的增加,该复合材料的抗拉强度提高,伸长率降低,断裂方式由基体脆韧混合断裂转化为基体脆韧混合断裂与增强颗粒团聚脆断相结合。  相似文献   

6.
在Al-12Si中添加合金元素Ce和Al_2O_3复合增强颗粒,采用机械振动辅助浇注制备出了Al-12Si-0.5Ce-5%Al2O3新型Al-Si系建筑储能材料。研究了该材料的物相组成、显微组织、高温力学性能、高温抗氧化性能和储热性能。结果表明,与Al-1_2Si相比,合金元素Ce和Al_2O_3复合增强颗粒的添加可使其300℃抗拉强度增加40%,500℃抗拉强度增加103%,600℃高温氧化100h后的单位面积质量增重减小89%,初始熔化温度升高1.7℃。  相似文献   

7.
研究借助半固态技术,在较低温度下向铝合金熔体中搅拌加入反应物SiO_2颗粒,并通过熔体原位反应制备了Al_2O_(3(p))/Al复合材料。在加入SiO_2颗粒的同时,加入了适量Mg块以促使在颗粒表面发生三元反应,可提高颗粒的润湿性。熔体温度升至880℃时,在超声共同作用下,SiO_2与Al反应生成Al_2O_3增强颗粒,基体组织得到改善。研究表明,该复合材料中的颗粒细小均匀。  相似文献   

8.
采用原位法和半固态搅拌铸造法制备了体积分数为1%,尺寸分别为1μm、500 nm和100 nm的Al_2O_3颗粒和4wt%Mg_2Si颗粒增强铝基复合材料,利用金相显微镜、扫描电镜、X射线衍射仪和能谱仪对材料显微组织、相组成和元素组成进行分析,并对其拉伸性能进行测试。结果表明:Al_2O_3颗粒的加入使该复合材料基体组织得到细化,并且Al_2O_3颗粒尺寸越小组织越细。添加Al_2O_3颗粒使复合材料抗拉强度提高,随着Al_2O_3颗粒尺寸的减小,复合材料抗拉强度升高,而伸长率降低。Mg_2Sip/Al复合材料和(Al2O3(1μm)+Mg2Si)p/Al复合材料的断裂方式主要是韧脆混合型断裂,(Al_2O_3(500 nm)+Mg_2Si)p/Al复合材料和(Al_2O_3(100 nm)+Mg_2Si)p/Al复合材料断裂方式主要为韧性断裂。  相似文献   

9.
《铸造》2020,(7)
为研究Al-Si合金凝固过程中纳米颗粒如何影响Si相形貌,在Al-20Si半固态区间加入0.5wt.%ZnO纳米颗粒并机械搅拌,铸态Al-20Si-0.5ZnO复合材料的强度和伸长率显著提高。其中,伸长率提高5倍左右。金相及SEM组织显示初晶和共晶Si都得到了细化。初晶Si由星状转变为多面体状或块状,且其边缘及凹角更加圆整,共晶Si的宽度也更加细小。研究结果表明,ZnO加入后与熔融铝液发生还原反应生成Al_2O_3,同时细化了初晶Si和共晶Si,从而显著提高了合金的伸长率。  相似文献   

10.
在Al_2O_3预制坯里添加15%的Ti粉,制备Ti活化Al_2O_(3p)/65钢复合材料,研究了Ti元素对复合材料组织、润湿行为和性能的影响。相比未添Ti粉的复合材料,添加Ti粉的复合材料其钢基体中铁素体含量得到提高,生成了TiC界面层,增强颗粒与基体界面的表现为冶金结合,润湿角由125°降到75°;复合材料的硬度、三点抗弯强度及三体磨料磨损性能也均得到提高。  相似文献   

11.
通过在Al_2O_3颗粒预制体中添加活化元素Cr,利用挤压铸造制备出Cr-Al_2O_(3p)/65钢基表层复合材料,研究Cr元素对复合材料组织和性能的影响。结果表明,Cr粉的加入,使得复合材料硬度(HRC)达到了50.7,抗弯强度达到669.5 MPa,相比未添加Cr的分别提高了95.6%、13.7%。界面润湿角相比于未添加Cr粉的复合材料,从125°降到109°。组织分析表明,加入的Cr粉与Al_2O_3颗粒附近的钢水形成Fe-Cr相,表明了成分的互相扩散,界面结合方式仍为机械结合方式。断口扫描分析表明,复合材料的断裂形式主要表现为脆性断裂,但颗粒和基体界面结合良好。所以,在挤压铸造Al_2O_(3p)/65钢复合材料中加入Cr粉可以改善和提高复合材料的力学性能及界面结合强度。  相似文献   

12.
通过转喷微注法制备Al_2O_3/7075复合材料,自行设计了转喷微注装置,利用氩气流将增强体颗粒注入熔融金属液,解决了增强体颗粒不易进入金属内部的问题。试验选用不同含量(质量分数分别为0、2%、4%和6%)的亚微米Al_2O_(3p)作为增强相制备Al_2O_3/7075复合材料,并对其组织性能进行观察与测试。结果表明,这种工艺制备成的Al_2O_3/7075复合材料的晶粒组织较不含Al_2O_3的基体合金小,当Al_2O_3的质量分数为4%时,Al_2O_3/7075复合材料的拉伸强度达到最高值182 MPa,较基体铝合金的拉伸强度提高了20%,硬度从HB76提升到HB113,提高了48%;如果进一步增加增强相含量,则复合材料拉伸性能开始出现下降的趋势。  相似文献   

13.
通过搅拌铸造法制备了3种不同体积分数(2%,5%,10%)的SiCp/Mg-5Al-2Ca复合材料,并在673 K下进行了热挤压。铸态复合材料中,少量SiCp颗粒的加入就能破坏Al2Ca相沿基体合金晶界分布并有效细化Al_2Ca相析出尺寸。随着Si Cp体积分数的增高,Al_2Ca相尺寸有所减小,但不明显。经过热挤压后,Al2Ca相破碎并沿挤压方向排布,基体合金晶粒得到细化。晶粒尺寸以及Al2Ca相尺寸随着Si Cp体积分数的增高呈微小减小。与单组元基体合金相比较,挤压态Si Cp/Mg-5Al-2Ca复合材料的屈服强度和加工硬化率随着Si Cp体积分数的增高而逐渐增高,而延伸率则逐渐下降;抗拉强度最大值则出现在Si Cp体积分数为5%时。复合材料中Si Cp颗粒以及Al2Ca相的脱粘以及开裂是导致复合材料断裂的主要原因。  相似文献   

14.
采用半固态搅拌技术向铝熔体中加入SiO_2粉末,通过熔体原位反应成功制备了α-Al_2O_(3p)/ZL109复合材料,并在不同挤压力下对复合材料进行了成形试验。利用扫描电镜和X射线衍射仪对复合材料的微观组织和相组成进行了分析,并测试了其力学性能。结果表明,挤压铸造原位α-Al_2O_(3p)/ZL109复合材料铸件内部缺陷少、增强颗粒均匀分散;挤压铸造后,复合材料在铸态和热处理态的抗拉强度、硬度、伸长率均明显高于ZL109合金,且随挤压力增加而提高。  相似文献   

15.
采用扫描电镜对SiC颗粒增强Al-7%Si(质量分数,下同)、Al-12%Si和Al-22%Si三种铝基复合材料中基体/SiC的界面结合状况进行了研究,结果表明:尽管基体合金中的Si含量不同,但复合材料的基体/SiC界面都有Si相小颗粒析出;在w(Si)=12%的共晶Al-Si合金为基体的复合材料中,SiC颗粒周围Si相小颗粒数量最多.Si相存在于SiC颗粒与铝合金基体之间,一边与基体相连,另一边与SiC增强体相连,起到了"连接桥"的作用,改善了复合材料的界面结合质量.  相似文献   

16.
SiCP/Al-Si复合材料颗粒偏析问题及力学性能   总被引:1,自引:0,他引:1  
采用扫描电镜对基体中Si含量和冷却速度对SiCp/Al-Si复合材料颗粒偏析问题及Si含量和冷却速度对复合材料力学性能的影响进行了研究.结果表明,当基体分别为Al-7Si、Al-12Si和Al-21Si合金时,随着基体中Si含量的增加,SiC颗粒偏析得到明显改善,但当基体中Si含量大于12%时,随着Si含量的增加,SiC颗粒偏析改善的程度不明显.当基体为Al-7Si合金时,采用砂型时,SiC颗粒被排斥到共晶体内,形成颗粒偏析;采用石疆型时,由于冷却速度快,SiC颗粒没有充分的时间做长距离的移动,SiC颗粒分布均匀.随着基体中Si含量的增加,3种基体复合材料的力学性能逐渐降低.增大冷却速度可以明显提高材料的力学性能.  相似文献   

17.
采用熔体反应法,通过铝液与SiO2粉末之间的化学反应制备了Al2O3颗粒增强Al-Si合金基复合材料。研究表明,生成的颗粒尺寸为0.2~0.5pm,在Al—Si基体上分布比较均匀;随颗粒含量增加,复合材料的显微硬度显著提高。利用微粒反应模型,对Al与SiO2颗粒之间的化学反应进行了分析。  相似文献   

18.
采用电磁搅拌和熔体混合技术制备Al-20Si合金,研究表明,单纯采用电磁搅拌技术制备Al-20Si时,会产生偏析层,其初生Si相平均尺寸在60μm以上;而采用熔体混合+电磁搅拌复合处理可使Al-20Si合金中的初生Si相尺寸降至16μm以下,并消除在单纯电磁搅拌合金边缘出现的粗大的初生Si相的偏析层。熔体混合处理处理还可以强化过共晶Al-20Si合金的电磁搅拌效果,获得良好细化效果。  相似文献   

19.
利用无压浸渗法制备高体积分数SiC的SiC_p/Al复合材料.采用XRD和SEM对复合材料的相组成、微观组织及断口形貌进行分析,研究颗粒粒径分布和基体合金成分对复合材料抗弯性能的影响.结果表明:以Al-10Si-8Mg(质量分数,%)合金为基体制备的复合材料组织均匀,致密度好,无明显气孔缺陷;界面反应产物为Mg2Si、MgAl_2O_4和Fe,其弯曲强度高于以Al-10Si合金为基体制备的复合材料的弯曲强度;SiC_p/Al复合材料的弯曲强度随着SiC颗粒粒径的增大而减小;复合材料整体上表现出脆性断裂的特征.  相似文献   

20.
采用光学显微镜等手段对Mg和Mn复合变质处理后的过共晶Al-Si合金显微组织及形貌进行观察。结果表明:随着Si含量的增加,Al-Si合金中有粗大的不规则板条状的初生硅和长条状的共晶硅生成,且随Si含量的增加,合金的抗拉强度呈下降趋势,布氏硬度则逐渐增加;在Al-20Si合金中添加0.9%Mg后,合金中的初生硅和共晶硅得到明显细化,合金的力学性能提高;0.9Mg-xMn的加入可同时变质Al-20Si合金的初生硅和共晶硅,初生硅的形状由星形和不规则形状变为块状,共晶硅由长针状变成球状或短棒状;0.9Mg-0.5Mn复合加入后,合金的铸态抗拉强度最高,达到了210 MPa,较Al-20Si和Al-20Si-0.9Mg合金分别提高64%和37%;热处理以后的抗拉强度达到345 MPa,较铸态的提高64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号