首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为研究聚能爆破载荷下控制孔对煤体裂隙扩展规律的影响,通过理论分析与数值模拟,探讨控制孔对爆炸应力波传播特性、爆生主裂隙扩展规律、煤体单元的应力状态及其位移特征的影响。结果表明,聚能爆破过程中压缩应力波在控制孔处的反射迭加作用显著改变了孔壁周围和爆生主裂隙尖端的应力场,主导了爆生主裂隙的定向扩展和孔壁周围环向裂隙的形成;控制孔提供的位移补偿空间及孔壁的曲面特性增强了孔壁及周围煤质点的切向拉伸应力,促进了孔壁周围径向裂隙的发育与扩展;控制孔促使爆生主裂隙定向扩展与控制孔孔壁周围的径向裂隙和环向裂隙相互交织成一个庞大裂隙网。同时,开展煤层深孔聚能爆破现场试验,研究了有、无控制孔对煤层增透效果的影响,试验结果表明,控制孔能够大幅度提高煤层聚能爆破增透效果,前、后期试验有控制孔一侧钻孔内平均瓦斯体积分数增幅分别是无控制孔一侧钻孔内平均瓦斯体积分数增幅的1.78和2.48倍。  相似文献   

2.
不同装药模式爆破载荷作用下煤层裂隙扩展特征试验研究   总被引:1,自引:0,他引:1  
 为了研究炸药在不同煤岩介质中爆破所产生的裂隙扩展和力学特征,提高深孔预裂爆破对低透气性煤层进行增透的效果,在实验室搭建爆破模拟试验系统,设计穿层钻孔和顺层钻孔2种不同的装药模式,以Froude 比例法建立煤层深孔预裂爆破的试验模型,利用相似材料配比加工制备尺寸为50 cm×50 cm×50 cm的试样进行爆破模拟试验。通过超动态应变仪监测煤岩层的应变信号,利用高速摄像仪记录试样完整的裂纹萌生、扩展、贯通直至试样破坏的全过程,分析爆破载荷作用下试样的动态力学特性和裂纹扩展特性。研究发现,裂纹主要是由压缩波与卸载波共同作用形成的,裂纹扩展方向与炮孔轴线方向垂直;在煤岩介质中实施穿层钻孔爆破的爆破效果优于顺层钻孔煤层爆破效果,当爆破应力波从煤层入射到岩层后,出现反射拉伸波,反作用于煤体上,加剧煤岩不同爆破介质的破坏程度,促使爆破裂隙的扩展。研究成果可用于指导井下低透气性煤层深孔预裂爆破装药方式的选择,以提高瓦斯抽采效率。  相似文献   

3.
聚能药卷的爆炸裂纹定向扩展过程试验研究   总被引:1,自引:0,他引:1  
应用透射动焦散线试验研究爆炸裂纹定向断裂超动态破坏力学特征。试验结果表明,爆炸主裂纹断口特征为典型的拉伸断裂,爆炸裂纹尖端的动态应力强度因子、裂纹扩展速度、扩展长度的变化趋势几乎相同,爆炸主裂纹主要在60~200μs完成,极限动态应力强度因子很少超过1.5MN/m3/2,爆炸裂纹止裂韧性约为0.3MN/m3/2。聚能药卷具有明显的爆轰波卸载效应和聚能方向爆生气体射流效应,高压爆生气体射流的"气楔效应"是聚能方向压缩径向裂纹进一步扩展的主要驱动力,同时抑制了非聚能方向压缩径向裂纹的发展。双孔点射流聚能药卷、双缝线射流聚能药卷都能实现岩石定向断裂爆破,形成良好的爆破断裂面,多缝线射流聚能药卷适用于高瓦斯煤层增透防突的深孔预裂爆破。  相似文献   

4.
 采用数字激光动态焦散线系统,研究有机玻璃板中不同药量的切缝药包双孔爆破主裂纹及分支裂纹的扩展规律。结果表明,切缝药包爆破主裂纹以I型拉伸断裂模式为主,爆破主裂纹难以穿过邻近炮孔的预制裂缝继续扩展;分支裂纹是预制裂缝尖端在爆破应力波衍射拉伸形成应力集中而萌生、起裂,相向分支裂纹分别扩展,最终呈“牵手状”贯通、止裂,分支裂纹贯通后扩展速度及动态应力强度因子急剧降低。对比不同药量模型试验结果发现,小药量炮孔相比大药量炮孔的爆破主裂纹、分支裂纹扩展速度及动态应力强度因子均较小,分支裂纹起裂时间较迟,且稳定扩展时间、扩展长度也较短,延长了分支裂纹贯通时间。相同药量两炮孔爆破主裂纹及分支裂纹断裂力学特征量近似相等,单炮孔的分支裂纹不贯通。试验研究为分析爆破裂纹扩展物理过程提供了参考。  相似文献   

5.
Holmquist-Johnson-Cook(HJC)本构模型在冲击爆炸工程数值模拟中广泛应用。为了探寻煤岩体合理的模型参数,确定液态CO_2爆破的实际效果和致裂范围,以陕北神木某矿区CO_2爆破开采为依托,由静力学特性试验和分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)冲击试验得到该矿煤岩的基本物理力学参数;运用正交实验法,采用基于LS-DYNA3D平台的数值模拟方法再现了SHPB冲击压缩试验的全过程,用Person相关系数判定试验与模拟应变信号的吻合度,反演得到HJC模型的主要敏感参数B和N;引入*MAT-ADD-EROSION失效条件,采用抗压、抗拉失效准则,真实再现CO_2爆破中裂纹萌生、扩展、贯通直至形成裂隙区的全过程,较好地模拟了爆破冲击岩体的碎裂特征,有效反映工作面煤岩体的几何非线性特性;对比分析了液态CO_2爆破和原始炸药爆破的裂纹扩展特征及爆破效果;研究了液态CO_2爆破应力波衰减规律,给出压碎区和裂隙区的范围。结果表明:液态CO_2爆破应力波衰减及能量释放过程较为持续平缓,在裂隙区主要产生细长型裂纹,裂隙区面积远大于炸药爆破;相同当量下,液态CO_2爆破范围大于炸药爆破范围,且CO_2爆破压碎区面积减小、裂隙区面积增大,煤岩主要表现为块状破碎。将研究结果应用于该矿区CO_2爆破开采工业性试验中,考虑4个致裂器同时作用,采取方形布孔方式,计算确定爆破孔距及排距均为0.7 m,试验结果表明,实际爆破效果良好,块煤率较炸药提高了38.5%。  相似文献   

6.
预裂爆破是一种控制爆破法,这种爆破法是沿预裂面(即设计轮廓线)钻一排较为密集的炮孔,在这些炮孔或部分炮孔内进行少量装药,并均匀分配药量,在主爆破未爆前先行起爆,便沿预裂面产生一条相当于炮孔深度的裂缝,而后再进行中心部分的主爆破。预裂爆破的原理是:当两个炮孔同时起爆时,应力波在炮孔之间相互作用,使炮孔间的岩石承受拉应力而造成破裂,于是在炮孔间形成断裂区。如果炮孔间距和装药量合  相似文献   

7.
煤层瓦斯抽采爆破卸压的钻孔布置优化分析及应用   总被引:2,自引:2,他引:0  
 为解决重庆地区低透气性松软煤层瓦斯抽采率低的难题,提出煤层底板预裂爆破卸压增透新技术,指出其增透过程分为爆破应力波与爆生气体共同作用形成裂隙贯通区和爆破空腔顶部煤岩体垮落形成卸压带2个阶段。借助数值模拟对不同孔距爆破应力波的动态演变规律进行研究,发现预裂爆破影响范围分为粉碎区和贯通区,其中粉碎区范围约为爆破孔直径的6倍,而贯通区的形成则主要受大直径控制孔反射形成的拉伸波作用,最终得到预裂爆破形成贯穿裂隙且保持与控制孔同高破坏区间的最优孔距为0.9 m,并将该技术应用于重庆–煤矿K4煤层底板巷预抽瓦斯工程。应用结果表明:瓦斯抽采纯量提高2.8倍,瓦斯抽采浓度提高3.75倍,而且在爆破完成20~30 d后瓦斯抽采效果明显提高。  相似文献   

8.
为了解决传统的钻眼爆破掘进巷道法在围岩中形成的裂纹无序扩展,遇到构造带时极易诱发动力灾害的现实问题,开展构造煤岩层内巷道掘进定向聚能爆破破岩技术研究。根据聚能爆破的空穴效应和能量转移原理,建立聚能爆破的岩石断裂力学模型,将聚能爆破与普通爆破的裂纹起裂及扩展规律进行对比分析,得出聚能爆破与普通爆破形成的粉碎区以及应力峰值的倍数关系。搭建可模拟地应力与瓦斯压力的爆破试验平台,通过普通爆破和聚能爆破的相似模拟对比试验发现,聚能爆破在聚能方向上形成的粉碎区是普通爆破同方向的0.838倍,应力峰值是普通爆破的1.58倍,爆生气体的静力学作用时间对比普通爆破,在聚能方向上延长了300μs,非聚能方向上缩短了250μs。同时,进行聚能爆破掘进的现场应用,巷道周边眼采用聚能装药后,超欠挖率减少了近50%。研究表明,聚能爆破使聚能方向的裂纹扩展范围增大,非聚能方向的裂纹扩展范围减小,运用于掘进构造带中的巷道时能够提高爆破效率,降低对支护围岩体和构造煤体的损伤破坏程度,抑制由爆破掘进诱发的瓦斯动力灾害事故。  相似文献   

9.
为解决坚硬特厚高瓦斯煤层采用综采放顶煤方法开采时,坚硬顶煤在矿山压力的作用下破坏不充分,从而造成煤炭资源的回采率低,同时使工作面呈现强烈的矿压显现和瓦斯浓度大而严重威胁工作面的安全等问题,提出深孔爆破顶煤预先弱化和瓦斯预抽技术。通过顺层钻孔煤层深孔爆破数值模拟和理论研究相结合的方法,揭示深孔爆破预裂顶煤和抽采卸压瓦斯机理。药柱在坚硬顶煤中爆破,爆破孔周边的煤体受爆轰应力波的作用产生裂隙并发生大幅度位移,使爆破孔周围的应力重新分布,厚层顶煤垮落;同时,在炮孔周围形成爆破松动破碎圈,瓦斯解吸沿着裂隙流动,提高瓦斯抽采效率。最后,在水帘洞煤矿3801工作面进行超前深孔爆破顶煤预先弱化和瓦斯抽采的现场应用,对类似条件下高瓦斯坚硬顶煤综放工作面特厚煤层开采具有很好的借鉴意义。  相似文献   

10.
基于LS-DYNA的预裂爆破硬夹矸弱化技术研究   总被引:1,自引:0,他引:1  
基于预裂爆破对含硬夹矸特厚煤层综放开采顶煤冒放性的重要作用,建立了夹矸破断的非均布载荷悬臂梁力学模型,得出了夹矸层位、厚度对悬臂梁破断的力学作用机理。同时,结合金庄矿含硬夹矸特厚煤层实际条件,采用柱状空腔膨胀理论对爆破产生的破碎区、裂隙区及弹性震动区分别进行了计算分析。在此基础上,采用ANSYS/LS-DYNA动力有限元分析软件,对柱状炸药与孔壁间是否耦合的装药方式、炮孔与硬夹矸的不同相对位置及四种炮孔布置与起爆方式条件下的爆炸应力波传播规律和爆破能量的衰减特性等进行了数值模拟研究,得到顶煤深孔预裂爆破硬夹矸弱化技术的最优爆破方案。结果表明:该矿夹矸平均悬臂距l为6.5 m,硬夹矸内单孔有效破坏直径为6.2 m,不耦合装药、炮孔布置于夹矸层内、按排布孔延时起爆是深孔预裂爆破硬夹矸弱化技术的最优方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号