首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 138 毫秒
1.
2.
采用微机数字仿真及实验研究的方法,对两阻尼及三阻尼结构的溢流阀进行了静、动态特性分析,从而得到阻尼孔结构布局对溢流阀性能的重要影响;而三阻尼结构型式,使溢流阀的综合性能品质得到显著提高。  相似文献   

3.
针对高压气动减压阀中滑阀式先导阀的缝隙泄漏,建立了考虑泄漏影响的数学模型,对减压阀工作条件和先导阀结构参数等影响因素进行了仿真.结果表明,降低减压阀输入压力、提高输出压力以及提高先导阀节流窗口宽度比等都能有效减少泄漏,仿真分析了泄漏对减压阀压力响应的影响,结果表明,泄漏能提高压力响应速度,但增大了压力超调且降低了压力稳定性,严重时还能导致振荡.仿真结果对于减压阀优化设计及其合理应用有较大参考价值.  相似文献   

4.
针对液压激振系统中存在高频交变压力的情况,为研究高频交变压力下先导式溢流阀的响应特性,对先导式溢流阀进行理论分析和AMEsim仿真分析,并进行试验对比研究。仿真结果表明:交变压力下先导式溢流阀主阀口存在异常开启现象,使系统能量损失增加;交变压力峰值、幅值和建压时间Δt均对先导式溢流阀主阀口正常开启产生影响。试验结果与理论分析相吻合,揭示了高频交变压力下溢流阀主阀口异常开启的现象。  相似文献   

5.
The current work is concerned with modelling and analysis for a pilot relief valve, thus successfully bringing a systematic method for designing and analyzing similar valves. The essence of the work is to solve two important problems, one for positions of the pilot valve influenced by flow force and the other is for the opening of the relief valve governed by a thin annular plate. The computational fluid dynamics(CFD) method is used to present the flow force. Using a series of experiments, the flow rate versus pressure drop shows the rationality of the CFD results. In order to obtain the opening of relief valve with higher accuracy, the large deflection theory of thin plates is adopted. An equivalent method for replacing the concentrated force is innovatively proposed so that all of the loads of the plates can be given by a unified expression, which reduces the number of the governing equations and intermediate boundary conditions. For presenting a very simple and reliable method for solving the governing equation, an unconstrained nonlinear optimization is innovatively introduced to solve the deflection of the thin annular plate. Being verified by finite-element method(FEM) of the relief valve, the equivalent method and optimization can solve deflection of thin plates rapidly and accurately. Reflected through a complete model for the pilot relief valve, the theoretical flow rate of the pilot relief valve is consistent with experimental conclusion. Once again, the comparisons bring us insight into the accuracy of the method adopted in the current work.  相似文献   

6.
结构参数对先导式纯水溢流阀性能的影响   总被引:3,自引:0,他引:3  
应用流场数值模拟技术,在不同结构参数、压力、流量等条件下,对先导式纯水溢流阀主阀流道
内的流场流态进行动态仿真.分析了结构参数对流场流态及压力 流量特性的影响,在此基础上确定了影
响阀静态特性的主要结构参数.结合仿真结果,对结构参数进行优化设计,并对先导式纯水溢流阀静动态
特性进行实验研究.结果表明:所研制的先导式纯水溢流阀滞徊小于3%,定压精度大于88%,压力上升
时间小于0.075 s,压力超调量低于14%.利用流场仿真技术对溢流阀进行优化设计,不仅能够提高溢流
阀的静态性能,同时还能够改善其动态响应特性.  相似文献   

7.
根据溢流阀的特点,以Y2-Hc10型先导式溢流阀为阀体,设计了并联型及开关切换型模糊PID控制的数字溢流阀系统并建立数学模型。通过Matlab的仿真表明,两种模糊PID控制的数字溢流阀响应速度快、精度高,控制效果较好。  相似文献   

8.
介绍了雷电波在遇到串联电感时,不同的时刻折、反射系数会发生变化,雷电波通过它们时将发生波形的改变.雷电波的陡度降低,雷电波的电压幅值也相应降低.根据这一原理,利用ICGS冲击平台进行大规模的试验,通过对实验数据进行对比分析,提出在多级电涌保护器的设计中,采用串联电感的方法可以降低电涌保护器的残压,相对地增加SPD的承受能力,提高电涌保护器的保护效果,对电力系统的防雷保护具有重要意义.  相似文献   

9.
保证差动式调压室良好的水力特性,对于水电站的安全稳定运行具有重要意义.以某水电站上游调压室为研究对象,对其大井与升管之间的回流孔采用非对称结构设计,利用专业软件详细计算了其进出流阻抗特性.结果表明:与对称孔口情况相比,非对称回流孔的进流阻抗系数明显减小,而出流阻抗系数显著增大,从而大大改善了调压室的动态特性;在分流比固...  相似文献   

10.
带活门轴对称变截面管道中强激波的传播特性   总被引:1,自引:1,他引:0  
研究了核爆炸环境下带活门轴对称变截面管道中非理想气体激波的传播特性,并讨论了在其传播过程中电离和离解效应的影响.通过利用TVD格式和时变非均匀网格对模型进行的数值模拟表明,在理想模型中波前压强的变化不会对无量纲结果产生影响,但在非理想模型中却会导致无量纲结果的较大变化,而且入射激波的波峰越陡,到出口处波峰被抹平的幅度越大,活门的消波效果理想.通过对一维和二维计算结果的比较指出了一维计算的缺陷所在,而数值计算和近似估算结果的比较验证了近似估算公式的正确性.  相似文献   

11.
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation,conduction and convection in indirect near infrared ray (NIR) heating chamber.The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers.The Reynolds numbers were varied from 103 to 3×106,which was defined based on the hydraulic diameter of the heat absorbing cy...  相似文献   

12.
Therearethreefrictionpairsinthestructureofapunchpress.Theyareinbetweenthecrankshaftneckandthecrankshaftbush;thecrankshaftneckandthebushoftheconnectingrod;andthesmallendoftheconnectingrod(sphericalend)andtherestoftheslideblocksphericalend.Becauseoferrorsin…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号