首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
提出了一种蜂窝式透镜阵列立体元图像的生成方法。首先,通过分析真实透镜的成像原理,建立了成像模型。然后,利用虚拟相机阵列模拟透镜阵列,根据显示端透镜阵列和显示器的参数设置虚拟相机的采集参数。最后,采用投影的方式生成立体元图像阵列。实验结果表明:利用本文方法生成的蜂窝式立体元图像阵列在水平和垂直方向均具有连续的视差变化,且满足子图像与立体元图像之间的投影关系,可以真实再现3D物体的空间信息。本文方法既克服了透镜阵列直接采集存在的空间反转和串扰等问题,又可避免光学采集设备带来的误差,节约成本,可为基于组合成像系统研究提供各种图像来源。  相似文献   

2.
为解决组合立体成像系统中立体元图像阵列的存储和传输问题,采用分布式预测编码的方法对立体元图像阵列进行压缩.利用立体元图像间的像素关系,将立体元图像阵列变换成子图像阵列;根据子图像阵列的规律性变化,采用最优位移预测结合PRISM分布式编码结构对子图像阵列进行分级编码.实验结果表明,所提算法的率失真性能明显优于JPEG编码标准;在立体元图像阵列分辨率一定的情况下,组合立体成像系统的显示分辨率越高,本方法的压缩性能越好,对未来高分辨率显示的组合立体成像系统具有更好的适应能力.  相似文献   

3.
集成成像技术是一种能够较为真实地再现三维场景的立体显示技术,研究发现平面图像在经过计算机处理后能够得到其视差图像。本文基于集成成像技术的原理提出一种适用于各类层次分明平面图像的计算机生成集成成像方法,该方法通过对平面图像进行分层和像素平移来获取视差图像,从而得到子图像阵列,并使用连续抽样法和间隔抽样法将子图像阵列转换为单元图像阵列。实验证明,在对视差图像形成中位移量等参数设定合理的情况下,本文提出的方法可取得较好的立体显示效果。  相似文献   

4.
为了克服离散视点采集结合窗截取的立体元图像生成方法对采集平台参数的依赖,本文提出采用基于拍摄对象的自适应窗截取算法来获得立体元图像阵列。首先,利用离散视点采集平台获得拍摄对象的离散视点图像阵列;然后,计算拍摄对象在每幅离散视点图像中的成像区域,再根据成像区域对截取窗参数的制约关系生成截取窗,并利用截取窗将离散视点图像阵列处理成子图像阵列;最后,根据立体元图像阵列与子图像阵列之间的映射关系,将子图像阵列转换成立体元图像阵列。实验结果表明:本文方法能够在采集平台参数未知的情况下,获得与传统方法相同的立体元图像阵列,大大提高了离散视点图像阵列的通用性和立体元图像阵列的生成效率。  相似文献   

5.
针对组合成像系统中的立体元图像阵列由于采集设备等因素限制而难以实景拍摄的问题,提出了一种利用稀疏视点图像通过并行映射获得立体元图像阵列的方法。该方法首先使用相机阵列拍摄实际景物的稀疏视点图像,然后分别计算每幅图像的水平和垂直视差图并重构出图像中每个像素所对应实际物点的空间位置,最后采用并行映射的方法生成立体元图像阵列,对于立体元图像中仍然存在的空洞,采用插值计算的方法进行填补。实验结果给出了采集到的稀疏视点图像以及合成后的立体元图像阵列,结果表明,合成图像具有连续的视差变化,可以真实再现拍摄对象的空间结构,而且本文方法在实现上优于传统的立体元图像阵列采集方法。  相似文献   

6.
为了提高计算机集成成像技术的记录速度,提出了一种快速计算机集成成像技术。该技术基于无深度反转的一次记录原理,在一次记录过程中,忽略距离微透镜阵列近的物点,而记录距离微透镜阵列远的物点,从而获得无深度反转的微图像阵列。实验中采用Direct3D软件对3Dsmax软件创建的场景进行无深度反转的一次记录,快速地生成微图像阵列,并用光学再现的方式对其进行再现。实验结果证明,该方法的记录时间达到了0.56 s,实现了快速记录,并且真实地、无深度反转地重建出了立体图像。  相似文献   

7.
针对集成成像系统采用3DS MAX虚拟采集立体元图像(EI)阵列需要摆放大规模摄像机阵列难以应用到实际这个问题,建立了稀疏采集的集成成像系统.为了提高视差计算的准确率,提出采用颜色分割和积分投影的方法求取相邻图片每个颜色物体的视差平均值作为最终视差值.首先,在3DS MAX里建立虚拟场景和微透镜阵列模型.根据立体元图像(EI)和子图像(SI)之间的映射关系,采用通过先采集子图像再求取立体元图像的方法达到稀疏采集.对于渲染得到的图像采用基于颜色的图像分割法和积分投影法求取相邻图像中不同颜色物体的视差平均值,然后采用固定大小的矩形窗按照视差平均值平移截取渲染图像得到子图像.最后将子图像按顺序拼接,映射求取立体元图像用于立体显示.实验结果表明:原本需要59×41台摄像机才能拍摄得到的EI图像阵列仅需12×12台摄像机拍摄就可以得到,且立体显示效果明显.视差计算的误差率在水平方向和垂直方向均为0.433%,明显优于视差误差率为2.597%和4.762%的其它方法.文中方法更准确的实现方便快捷的集成成像稀疏采集系统,可用于大屏幕立体显示的EI内容采集.  相似文献   

8.
集成成像具有裸眼观看、无立体观看视疲劳、全真再现等优点,是目前主流的一种裸眼3D显示技术。在集成成像3D显示器研制过程中,由于微图像阵列尺寸不等于显示器像素的整数倍,将产生微图像阵列尺寸的缩放,同时由于集成成像3D显示器装配误差或微透镜阵列制作工艺精度不够等问题,将使得微图像阵列相对于微透镜阵列产生一定程度的平移。针对微图像阵列尺寸缩放和平移对集成成像重建的3D图像在图像深度和3D观看视角方面的影响问题,本文基于几何光学原理,采用集成成像图像重建技术和视角分析方法,分别分析微图像阵列尺寸缩放和平移时重建3D图像的深度以及3D观看视角的变化情况。通过计算机模拟仿真实验和实际的光学再现实验对理论分析进行了验证。仿真实验结果表明,3D图像深度随着微图像阵列尺寸的放大而增大,反之则减小;光学再现实验结果表明,3D观看视角随着微图像阵列尺寸的放大而增大,反之则减小,微图像阵列平移对3D观看视角产生了一定的平移,而对3D观看视角大小的影响甚微。根据仿真实验和光学再现实验结果,得出结论,微图像阵列缩放将引起3D图像深度畸变和3D观看视角的改变,而微图像阵列平移对集成成像3D显示的影响较小。该研究结果将为集成成像3D显示器的研制和优化起到实际的指导作用。  相似文献   

9.
虚拟弯曲透镜阵列已成为提高三维集成成像质量的有效手段.针对典型虚拟弯曲透镜阵列的集成成像系统,依据集成成像记录与重构原理,利用ABCD矩阵光学理论,推导了三维物体与三维集成图像的映射位置关系模型,实现了虚拟弯曲透镜阵列集成图像的计算生成与重构;引入成像取样率模型,定量分析了记录过程单元图像取样率与不同深度重构集成图像质量的关系.最后,利用相关度图像度量因子比较了虚拟弯曲透镜阵列和传统平面透镜阵列的集成图像质量,证明了虚拟弯曲透镜阵列在提高三维集成成像质量方面的优越性.  相似文献   

10.
针对传统自由视点集成成像计算重构方法重构图像分辨率较低的问题,提出了一种基于光场模型的自由视点计算重构方法.根据视点位置和观看方向,采用光场投影矩阵将微单元图像阵列投影到重构平面上,充分利用微单元图像阵列中的信息,实现了高分辨率的自由视点集成成像计算重构.仿真结果表明,采用文中方法可以实现集成成像系统的自由视点计算重构,且重构图像的分辨率比传统方法重构图像的分辨率有了很大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号