首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Remote sensing leaf water indices depend on two variables: the relative water content (RWC) of leaf cells, which may serve as an indicator for water deficit stress in plants, and leaf thickness. The measurement of leaf water thickness (LWT) appears to be an experimental method that can be well correlated with leaf water indices. We studied how leaf water indices relate to the LWT in cowpea, bean, and sugarbeet. In all three species, the LWT increased linearly with increasing leaf thickness. The T1300/T1450 leaf water index, based on light transmitted through leaves, showed a strong exponential correlation with the LWT as expected from theoretical analysis. However, the R1300/R1450 leaf water index, based on light reflected from leaves, exhibited a characteristic logarithmic correlation with the LWT. For both leaf water indices we found only minor differences between the three species examined.  相似文献   

2.
Because of the high water content of vegetation, water absorption features dominate spectral reflectance of vegetation in the near-infrared region of the spectrum. In comparison to indices based on chlorophyll absorption features (such as the normalized difference vegetation index (NDVI)), indices based on the water absorption bands are expected to “see” more deeply into thick canopies and have a preferential sensitivity to thin as opposed to thick tissues. These predictions are based on the much lower absorption coefficients for water in the short wavelength water bands as compared to chlorophyll. Thus, the water bands may have advantages over NDVI for remote sensing of photosynthetic tissues. Previous studies have primarily related water band indices (WI) to leaf area index (LAI). Here we expand the definition of photosynthetic tissues to include thin green stems and fruits and measure a wide range of species to determine the influence of variable tissue morphologies and canopy structures on these relationships. As expected, indices based on reflectance in the water absorption bands in the near infrared were best correlated with the water content of thin tissues (less than 0.5-cm thickness). The choice of wavelength for a water index was much more important for thick than for thin canopies, and the best wavelengths were those where water absorptance was weak to moderate. We identified three wavelength regions (950-970, 1150-1260 and 1520-1540 nm) that produced the best overall correlations with water content. Comparison of these wavelength regions with the atmospheric “windows” where water vapor absorption is minimal suggests that the 1150-1260 and 1520-1540 nm regions would be the best wavelengths for satellite remote sensing of water content. We also developed and tested a new Canopy Structure Index (CSI) that combines the low absorptance water bands with the simple ratio vegetation index (SR) to produce an index with a wider range of sensitivity to photosynthetic tissue area at all canopy thicknesses. CSI was better than either WI or SR alone for prediction of total area of photosynthetic tissues. However, SR was best for prediction of leaf area when other green tissues were excluded. All of these relationships showed good generality across a wide range of species and functional types.  相似文献   

3.
The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology and structure of vegetation in response to experimental warming and drought treatment at six European shrublands located along a North-South climatic gradient. We measured canopy reflectance, effective green leaf area index (green LAIe) and chlorophyll fluorescence of dominant species. The treatment effects on green LAIe varied among sites. We calculated three reflectance indices: photochemical reflectance index PRI [531 nm; 570 nm], normalized difference vegetation index NDVI680 [780 nm; 680 nm] using red spectral region, and NDVI570 [780 nm; 570 nm] using the same green spectral region as PRI. All three reflectance indices were significantly related to green LAIe and were able to detect changes in shrubland vegetation among treatments. In general warming treatment increased PRI and drought treatment reduced NDVI values. The significant treatment effect on photochemical efficiency of plants detected with PRI could not be detected by fluorescence measurements. However, we found canopy level measured PRI to be very sensitive to soil reflectance properties especially in vegetation areas with low green LAIe. As both soil reflectance and LAI varied between northern and southern sites it is problematic to draw universal conclusions of climate-derived changes in all vegetation types based merely on PRI measurements. We propose that canopy level PRI measurements can be more useful in areas of dense vegetation and dark soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号