首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The k-Nearest Neighbor (kNN) method of forest attribute estimation and mapping has become an integral part of national forest inventory methods in Finland in the last decade. This success of kNN method in facilitating multi-source inventory has encouraged trials of the method in the Great Lakes Region of the United States. Here we present results from applying the method to Landsat TM and ETM+ data and land cover data collected by the USDA Forest Service's Forest Inventory and Analysis (FIA) program. In 1999, the FIA program in the state of Minnesota moved to a new annual inventory design to reach its targeted full sampling intensity over a 5-year period. This inventory design also utilizes a new 4-subplot cluster plot configuration. Using this new plot design together with 1 year of field plot observations, the kNN classification of forest/nonforest/water achieved overall accuracies ranging from 87% to 91%. Our analysis revealed several important behavioral features associated with kNN classification using the new FIA sample plot design. Results demonstrate the simplicity and utility of using kNN to produce FIA defined forest/nonforest/water classifications.  相似文献   

2.
Geospatial datasets of forest characteristics are modeled representations of real populations on the ground. The continuous spatial character of such datasets provides an incredible source of information at the landscape level for ecosystem research, policy analysis, and planning applications, all of which are critical for addressing current challenges related to climate change, urbanization pressures, and data requirements for monitoring carbon sequestration. However, the effectiveness of these applications is dependent upon the accuracy of the geospatial input datasets. A comprehensive set of robust measures is necessary to provide sufficient information to effectively assess the accuracy of these modeled geospatial datasets being produced. Yet challenges in the availability of reference data, in the appropriateness of assessment methods to dataset use, and in the completeness of assessment methods available have continued to hamper the timely and consistent application of map assessments. In this study we present a suite of assessments that can be used to characterize the accuracy of geospatial datasets of modeled continuous variables—an increasingly common format for modeling such attributes as proportion or probability of forestland as well as more traditionally continuous attributes such as leaf area index and forest biomass. It is a comparative accuracy assessment, in which each modeled dataset is compared to a set of reference data, recognizing both the potential for error in reference data, and probable differences in spatial support between the datasets. When used together, this proposed suite of assessments provides essential information on the type, magnitude, frequency and location of errors in each dataset. The assessments presented depend upon reference data with large sample sizes. The U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA) database is introduced as an available reference dataset of sufficient sampling intensity to take full advantage of these assessments and facilitate their prompt application after modeled datasets are developed. We illustrate the application of this suite of assessments with two modeled datasets of forest biomass, in Minnesota and New York. The information provided by this suite of assessments substantially improves a user's ability to apply modeled geospatial datasets effectively and to assess the relative strengths and weaknesses of multiple datasets depicting the same forest characteristic.  相似文献   

3.
Researchers in lidar (Light Detection And Ranging) strive to search for the most appropriate laser-based metrics as predictors in regression models for estimating forest structural variables. Many previously developed models are scale-dependent that need to be fitted and then applied both at the same scale or pixel size. The objective of this paper is to develop methods for scale-invariant estimation of forest biomass using lidar data. We proposed two scale-invariant models for biomass: a linear functional model and an equivalent nonlinear model that use lidar-derived canopy height distributions (CHD) and canopy height quantile functions (CHQ) as predictors, respectively. The two models are called functional regression models because the predictors CHD and CHQ are themselves functions or functional data. The model formulation was justified mathematically under moderate assumptions. We also created a fine-resolution biomass map by mapping individual tree component biomass in a temperate forest of eastern Texas with a lidar tree-delineation approach. The map was used as reference data to synthesize training and test datasets at multiple scales for validating the two scale-invariant models. Results suggest that the models can accurately predict biomass and yield consistent predictive performances across a variety of scales with an R2 ranging from 0.80 to 0.95 (RMSE: from 14. 3 Mg/ha to 33.7 Mg/ha) among all the fitted models. Results also show that a training data size of around 50 plots or less was enough to guarantee a good fitting of the linear functional model. Our findings demonstrate the effectiveness of CHD and CHQ as lidar metrics for estimating biomass as well as the capability of lidar for mapping biomass at a range of scales. The functional regression models of this study are useful for lidar-based forest inventory tasks where the analysis units vary in size and shape. They also hold promise for estimating other forest characteristics such as below-ground biomass, timber volume, crown fuel weight, and Leaf Area Index.  相似文献   

4.
As part of developing the geographic information system (GIS) to support a north-eastern U.S. regional forest change modelling effort, we investigated the utility of several sources of AVHRR data in regional forest cover mapping. Single-date classified Advanced Very High Resolution Radiometer (AVHRR) imagery in combination with existing USGS Land Use/Land Cover data was used to create a forest cover database that encompassed eastern New York state and all of New England. The USGS EROS Data Center Conterminous U.S. Land Cover Characteristics database was also evaluated for comparison. Statistical analysis showed that the AVHRR-derived regional land cover datasets provided estimates of total forest area that were comparable to U.S. Forest Service county level estimates. The AVHRR imagery recorded after leaf fall appeared to enhance the discrimination of coniferous vs. deciduous forests.  相似文献   

5.
A ground-based, upward-scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stem count density (stems/area), basal area, and above-ground woody biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest structural parameters retrieved using EVI data with extensive ground measurements, we found excellent agreement at the site level using five EVI scans (plots) per site (R2 = 0.94-0.99); very good agreement at the plot level for stem count density and biomass (R2 = 0.90-0.85); and good agreement at the plot level for mean DBH and basal area (R2 = 0.48-0.66). The observed variance at site and plot levels suggest that a sample area of at least 1 ha (104 m2) is required to estimate these parameters accurately at the stand level using either lidar-based or conventional methods. The algorithms and procedures used to retrieve these structural parameters are dependent on the unique ability of the Echidna® lidar to digitize the full waveform of the scattered lidar pulse as it returns to the instrument, which allows consistent separation of scattering by trunks and large branches from scattering by leaves. This successful application of ground-based lidar technology opens the door to rapid and accurate measurement of biomass and timber volume in areal sampling scenarios and as a calibration and validation tool for mapping biomass using airborne or spaceborne remotely sensed data.  相似文献   

6.
Strategic forest inventory programs produce forest resource estimates for large areas such as states and provinces using data collected for a large number of variables on a relatively sparse array of field plots. Management inventories produce stand-level estimates to guide management decisions using data obtained with sampling intensities much greater than for strategic inventories. The costs associated with these greater sampling intensities have motivated investigations of alternatives to traditional sample-based management inventories. This study focused on a relatively inexpensive alternative to management inventories that uses strategic forest inventory plot data, Landsat Thematic Mapper (TM) satellite imagery, and the k-Nearest Neighbors (k-NN) technique. The approach entailed constructing stem density and basal area per unit area maps from which stand-level means were estimated as averages of k-NN pixel predictions. The study included investigations of the benefits of selecting optimal combinations of k-NN feature space variables derived from the TM imagery and the benefits of modifying the k-NN technique to eliminate spurious nearest neighbors. For both the stem density and basal area per unit area training data, the selection of optimal feature space covariates produced less than 1.5% improvement in root mean square error relative to using all covariates. The k-NN modification improved the sum of mean squared deviations for stand-level stem density and basal area per unit area estimates by 7–20% depending on the k-NN feature space covariates. For the best combination of feature space covariates, estimates of stand-level means were within confidence intervals for validation estimates for 11 of 12 stands for stem density and for 10 of 12 stands for basal area per unit area.  相似文献   

7.
Information about forest cover is needed by all of the nine societal benefit areas identified by the Group of Earth Observation (GEO). In particular, the biodiversity and ecosystem areas need information on landscape composition, structure of forests, species richness, as well as their changes. Field sample plots from National Forest Inventories (NFI) are, in combination with satellite data, a tremendous resource for fulfilling these information needs. NFIs have a history of almost 100 years and have developed in parallel in several countries. For example, the NFIs in Finland and Sweden measure annually more than 10,000 field plots with approximately 200 variables per plot. The inventories are designed for five-year rotations. In Finland nationwide forest cover maps have been produced operationally since 1990 by using the k-NN algorithm to combine satellite data, field sample plot information, and other georeferenced digital data. A similar k-NN database has also been created for Sweden. The potentials of NFIs to fulfil diverse information needs are currently analyzed also in the COST Action E43 project of the European Union. In this article, we provide a review of how NFI field plot information has been used for parameterization of image data in Sweden and Finland, including pre-processing steps like haze correction, slope correction, and the optimization of the estimation variables. Furthermore, we review how the produced small-area statistics and forest cover data have been used in forestry, including forest biodiversity monitoring and habitat modelling. We also show how remote sensing data can be used for post-stratification to derive the sample plot based estimates, which cannot be directly estimated from the spectral data.  相似文献   

8.
Airborne laser scanner systems provide detailed forest information that can be used for important improvements in forest management decisions. Planning systems under development use plot-survey data to represent forest stands in large forest holdings which enables new flexible methods to model the forest and optimize selection of silvicultural treatments. In Sweden today, only averages of forest stand variables are used, and the survey methods used do not provide plot-survey data for all stands in large forest holdings. This is a task possibly solved using airborne laser scanner data. Various measures can be derived from laser data, each describing different forest variables, such as tree height distribution, vegetation density and vertical tree crown structure. Here, imputation of field plot (10 m radius) data using measures derived from airborne laser scanner data (TopEye) and optical image data (SPOT 5 HRG satellite sensor) were evaluated as a method to provide data for new long-term management planning systems. In addition to commonly applied measures, the semivariogram of laser measurements was evaluated as a new measure to extract spatial characteristics of the forest. The study used data from 870, 10 m radius field plots (0 to 812 m3 ha− 1) surveyed for a 1200 ha large forest estate in the south of Sweden. At the best, combining measures derived from laser scanner data and SPOT 5 data, stand mean volume was estimated with a root mean square error (RMSE) of 20% of the sample mean and stem density with 22% RMSE. Bias of stem density estimates was 5%, and stand stem volume 4%. Although these accuracies are sufficient for operational application, estimates of tree species proportions and within-stand variation were clearly not.  相似文献   

9.
Regression models relating variables derived from airborne laser scanning (ALS) to above-ground and below-ground biomass were estimated for 1395 sample plots in young and mature coniferous forest located in ten different areas within the boreal forest zone of Norway. The sample plots were measured as part of large-scale operational forest inventories. Four different ALS instruments were used and point density varied from 0.7 to 1.2 m− 2. One variable related to canopy height and one related to canopy density were used as independent variables in the regressions. The statistical effects of area and age class were assessed by including dummy variables in the models. Tree species composition was treated as continuous variables. The proportion of explained variability was 88% for above- and 85% for below-ground biomass models. For given combinations of ALS-derived variables, the differences between the areas were up to 32% for above-ground biomass and 38% for below-ground biomass. The proportion of spruce had a significant impact on both the estimated models. The proportion of broadleaves had a significant effect on above-ground biomass only, while the effect of age class was significant only in the below-ground biomass model. Because of local effects on the biomass-ALS data relationships, it is indicated by this study that sample plots distributed over the entire area would be needed when using ALS for regional or national biomass monitoring.  相似文献   

10.
The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar in northern Minnesota and neighboring Ontario, Canada have increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered increased dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. We used partial least squares (PLS) regression to integrate different combinations of satellite sensor data including Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al., 2009), to determine the best combination of sensor data for estimating near species-level proportional forest composition (12 types: 10 species and 2 genera). Single-sensor and various multi-sensor PLS models showed distinct species-dependent sensitivities to relative basal area (BA), with Landsat variables showing greatest overall sensitivity. However, best results were achieved using a combination of data from all these sensors, with several C-band (Radarsat-1) and L-band (PALSAR) variables showing sensitivity to the composition and abundance of specific species. Pixel-level forest structure estimates derived from SPOT-5 data were generally more sensitive to conifer species abundance (especially white pine) than to hardwood species composition. Relative BA models accounted for 68% (jack pine) to 98% (maple spp.) of the variation in ground data with RMSE values between 2.46% and 5.65% relative BA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species relative BA estimates which ranged from 5.94% (jack pine) to 39.41% (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78%. Most notably, this approach facilitated discrimination of aspen from paper birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics in the Upper Midwest. We also demonstrate that PLS regression is an effective data fusion strategy for mapping composition of heterogeneous forests using satellite sensor data.  相似文献   

11.
According to the IPCC GPG (Intergovernmental Panel on Climate Change, Good Practice Guidance), remote sensing methods are especially suitable for independent verification of the national LULUCF (Land Use, Land-Use Change, and Forestry) carbon pool estimates, particularly the aboveground biomass. In the present study, we demonstrate the potential of standwise (forest stand is a homogenous forest unit with average size of 1-3 ha) forest inventory data, and ASTER and MODIS satellite data for estimating stand volume (m3 ha− 1) and aboveground biomass (t ha− 1) over a large area of boreal forests in southern Finland. The regression models, developed using standwise forest inventory data and standwise averages of moderate spatial resolution ASTER data (15 m × 15 m), were utilized to estimate stand volume for coarse resolution MODIS pixels (250 m × 250 m). The MODIS datasets for three 8-day periods produced slightly different predictions, but the averaged MODIS data produced the most accurate estimates. The inaccuracy in radiometric calibration between the datasets, the effect of gridding and compositing artifacts and phenological variability are the most probable reasons for this variability. Averaging of the several MODIS datasets seems to be one possibility to reduce bias. The estimates obtained were significantly close to the district-level mean values provided by the Finnish National Forest Inventory; the relative RMSE was 9.9%. The use of finer spatial resolution data is an essential step to integrate ground measurements with coarse spatial resolution data. Furthermore, the use of standwise forest inventory data reduces co-registration errors and helps in solving the scaling problem between the datasets. The approach employed here can be used for estimating the stand volume and biomass, and as required independent verification data.  相似文献   

12.
There is a need for accurate inventory methods that produce relevant and timely information on the forest resources and carbon stocks for forest management planning and for implementation of national strategies under the United Nations Collaborative Program on Reduced Emissions from Deforestation and Forest Degradation in Developing Countries (REDD). Such methods should produce information that is consistent across various geographical scales. Airborne scanning Light Detection and Ranging (LiDAR) is among the most promising remote sensing technologies for estimation of forest resource information such as timber volume and biomass, while acquisition of three dimensional data with Interferometric Synthetic Aperture Radar (InSAR) from space is seen as a relevant option for inventory in the tropics because of its ability to “see through the clouds” and its potential for frequent updates at low costs. Based on a stratified probability sample of 201 field survey plots collected in a 960 km2 boreal forest area in Norway, we demonstrate how total above-ground biomass (AGB) can be estimated at three distinct geographical levels in such a way that the estimates at a smaller level always sum up to the estimate at a larger level. The three levels are (1) a district (the entire study area), (2) a village, local community or estate level, and (3) a stand or patch level. The LiDAR and InSAR data were treated as auxiliary information in the estimation. At the two largest geographical levels model-assisted estimators were employed. A model-based estimation was conducted at the smallest level. Estimates of AGB and corresponding error estimates based on (1) the field sample survey were compared with estimates obtained by using (2) LiDAR and (3) InSAR data as auxiliary information. For the entire study area, the estimates of AGB were 116.0, 101.2, and 111.3 Mg ha−1, respectively. Corresponding standard error estimates were 3.7, 1.6, and 3.2 Mg ha−1. At the smallest geographical level (stand) an independent validation on 35 large field plots was carried out. RMSE values of 17.1-17.3 Mg ha−1 and 42.6-53.2 Mg ha−1 were found for LiDAR and InSAR, respectively. A time lag of six years between acquisition of InSAR data and field inventory has introduced some errors. Significant differences between estimates and reference values were found, illustrating the risk of using pure model-based methods in the estimation when there is a lack of fit in the models. We conclude that the examined remote sensing techniques can provide biomass estimates with smaller estimated errors than a field-based sample survey. The improvement can be highly significant, especially for LiDAR.  相似文献   

13.
Quantifying forest above ground carbon content using LiDAR remote sensing   总被引:1,自引:0,他引:1  
The UNFCCC and interest in the source of the missing terrestrial carbon sink are prompting research and development into methods for carbon accounting in forest ecosystems. Here we present a canopy height quantile-based approach for quantifying above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-return, small-footprint airborne LiDAR. Fieldwork was conducted in Monks Wood National Nature Reserve UK to estimate the AGCC of five stands from forest mensuration and allometric relations. In parallel, a digital canopy height model (DCHM) and a digital terrain model (DTM) were derived from elevation measurements obtained by means of an Optech Airborne Laser Terrain Mapper 1210. A quantile-based approach was adopted to select a representative statistic of height distributions per plot. A forestry yield model was selected as a basis to estimate stemwood volume per plot from these heights metrics. Agreement of r=0.74 at the plot level was achieved between ground-based AGCC estimates and those derived from the DCHM. Using a 20×20 m grids superposed to the DCHM, the AGCC was estimated at the stand level and at the woodland level. At the stand level, the agreement between the plot data upscaled in proportion to area and the LiDAR estimates was r=0.85. At the woodland level, LiDAR estimates were nearly 24% lower than those from the upscaled plot data. This suggests that field-based approaches alone may not be adequate for carbon accounting in heterogeneous forests. Conversely, the LiDAR 20×20 m grid approach has an enhanced capability of monitoring the natural variability of AGCC across the woodland.  相似文献   

14.
Estimates of mean tree size and cover for each forest stand from an invertible forest canopy reflectance model are part of a new forest vegetation mapping system. Image segmentation defines stands which are sorted into general growth forms using per-pixel image classifications. Ecological models based on terrain relations predict species associations for the conifer, hardwood, and brush growth forms. The combination of the model-based estimates of tree size and cover with species associations yields general-purpose vegetation maps useful for a variety of land management needs. Results of timber inventories in the Tahoe and Stanislaus National Forests indicate the vegetation maps form a useful basis for stratification. Patterns in timber volumes for the strata reveal that the cover estimates are more reliable than the tree size estimates. A map accuracy assessment of the Stanislaus National Forest shows high overall map accuracy and also illustrates the problems in estimating tree size.  相似文献   

15.
Abstract

An approach to extending high-resolution forest cover information across large regions is presented and validated. Landsat Thematic Mapper (TM) data were classified into forest and nonforest for a portion of Jackson County, Illinois. The classified TM image was then used to determine the relationship between forest cover and the spectral signature of Advanced Very High Resolution Radiometer (AVHRR) pixels covering the same location. Regression analysis was used to develop an empirical relationship between AVHRR spectral signatures and forest cover. The regression equation developed from data from the single county calibration area in southern Illinois was then applied to the entire AVHRR scene, which covered all or parts of ten states, to produce a regional map of forest cover. This map was used to derive estimates of forest cover, within a geographical information system (GIS), for each of the 428 counties located within the boundaries of the original AVHRR scene. The validity of the overall regional map was tested by comparing the AVHRR/TM-derived estimates of county forest cover with independent estimates of county forest cover developed by the U.S. Forest Service (USFS). The overall correlation coefficient of the AVHRR/TM and USFS county forest cover estimates was r=0-89 (n=428 counties). Not surpris0ingly, some individual states and the areas nearer to the southern Illinois calibration centre had higher correlation coefficients. Absolute estimates of forest cover percentages were also significantly well predicted. With the future inclusion of multiple calibration centres representing a number of physiographic regions, the method shows promise for predicting continental and global estimates of forest cover.  相似文献   

16.
The use of lidar remote sensing for mapping the spatial distribution of canopy characteristics has the potential to allow an accurate and efficient estimation of tree dimensions and canopy structural properties from local to regional and continental scales. The overall goal of this paper was to compare biomass estimates and height metrics obtained by processing GLAS waveform data and spatially coincident discrete-return airborne lidar data over forest conditions in east Texas. Since biomass estimates are derived from waveform height metrics, we also compared ground elevation measurements and canopy parameters. More specific objectives were to compare the following parameters derived from GLAS and airborne lidar: (1) ground elevations; (2) maximum canopy height; (3) average canopy height; (4) percentiles of canopy height; and (5) above ground biomass. We used the elliptical shape of GLAS footprints to extract canopy height metrics and biomass estimates derived from airborne lidar. Results indicated a very strong correlation for terrain elevations between GLAS and airborne lidar, with an r value of 0.98 and a root mean square error of 0.78 m. GLAS height variables were able to explain 80% of the variance associated with the reference biomass derived from airborne lidar, with an RMSE of 37.7 Mg/ha. Most of the models comparing GLAS and airborne lidar height metrics had R-square values above 0.9.  相似文献   

17.
In response to the urgent need for improved mapping of global biomass and the lack of any current space systems capable of addressing this need, the BIOMASS mission was proposed to the European Space Agency for the third cycle of Earth Explorer Core missions and was selected for Feasibility Study (Phase A) in March 2009. The objectives of the mission are 1) to quantify the magnitude and distribution of forest biomass globally to improve resource assessment, carbon accounting and carbon models, and 2) to monitor and quantify changes in terrestrial forest biomass globally, on an annual basis or better, leading to improved estimates of terrestrial carbon sources (primarily from deforestation); and terrestrial carbon sinks due to forest regrowth and afforestation. These science objectives require the mission to measure above-ground forest biomass from 70° N to 56° S at spatial scale of 100-200 m, with error not exceeding ± 20% or ± 10 t ha− 1 and forest height with error of ± 4 m. To meet the measurement requirements, the mission will carry a P-Band polarimetric SAR (centre frequency 435 MHz with 6 MHz bandwidth) with interferometric capability, operating in a dawn-dusk orbit with a constant incidence angle (in the range of 25°-35°) and a 25-45 day repeat cycle. During its 5-year lifetime, the mission will be capable of providing both direct measurements of biomass derived from intensity data and measurements of forest height derived from polarimetric interferometry. The design of the BIOMASS mission spins together two main observational strands: (1) the long heritage of airborne observations in tropical, temperate and boreal forest that have demonstrated the capabilities of P-band SAR for measuring forest biomass; (2) new developments in recovery of forest structure including forest height from Pol-InSAR, and, crucially, the resistance of P-band to temporal decorrelation, which makes this frequency uniquely suitable for biomass measurements with a single repeat-pass satellite. These two complementary measurement approaches are combined in the single BIOMASS sensor, and have the satisfying property that increasing biomass reduces the sensitivity of the former approach while increasing the sensitivity of the latter. This paper surveys the body of evidence built up over the last decade, from a wide range of airborne experiments, which illustrates the ability of such a sensor to provide the required measurements.At present, the BIOMASS P-band radar appears to be the only sensor capable of providing the necessary global knowledge about the world's forest biomass and its changes. In addition, this first chance to explore the Earth's environment with a long wavelength satellite SAR is expected to make yield new information in a range of geoscience areas, including subsurface structure in arid lands and polar ice, and forest inundation dynamics.  相似文献   

18.
The amount and spatial distribution of aboveground forest biomass (AGB) are required inputs to forest carbon budgets and ecosystem productivity models. Satellite remote sensing offers distinct advantages for large area and multi-temporal applications, however, conventional empirical methods for estimating forest canopy structure and AGB can be difficult in areas of high relief and variable terrain. This paper introduces a new method for obtaining AGB from forest structure estimates using a physically-based canopy reflectance (CR) model inversion approach. A geometric-optical CR model was run in multiple forward mode (MFM) using SPOT-5 imagery to derive forest structure and biomass at Kananaskis, Alberta in the Canadian Rocky Mountains. The approach first estimates tree crown dimensions and stem density for satellite image pixels which are then related to tree biomass and AGB using a crown spheroid surface area approach. MFM estimates of AGB were evaluated for 36 deciduous (trembling aspen) and conifer (lodgepole pine) field validation sites and compared against spectral mixture analysis (SMA) and normalised difference vegetation index (NDVI) biomass predictions from atmospherically and topographically corrected (SCS+C) imagery. MFM provided the lowest error for all validation plots of 31.7 tonnes/hectare (t/ha) versus SMA (32.6 t/ha error) and NDVI (34.7 t/ha) as well as for conifer plots (MFM: 23.0 t/ha; SMA 27.9 t/ha; NDVI 29.7 t/ha) but had higher error than SMA and NDVI for deciduous plots (by 4.5 t/ha and 2.1 t/ha, respectively). The MFM approach was considerably more stable over the full range of biomass values (67 to 243 t/ha) measured in the field. Field plots with biomass > 1 standard deviation from the field mean (over 30% of plots) had biomass estimation errors of 37.9 t/ha using MFM compared with 65.5 t/ha and 67.5 t/ha error from SMA and NDVI, respectively. In addition to providing more accurate overall results and greater stability over the range of biomass values, the MFM approach also provides a suite of other biophysical structural outputs such as density, crown dimensions, LAI, height and sub-pixel scale fractions. Its explicit physical-basis and minimal ground data requirements are also more appropriate for larger area, multi-scene, multi-date applications with variable scene geometry and in high relief terrain. MFM thus warrants consideration for applications in mountainous and other, less complex terrain for purposes such as forest inventory updates, ecological modeling and terrestrial biomass and carbon monitoring studies.  相似文献   

19.
Aboveground forest biomass and carbon estimation at landscape scale is crucial for implementation of REDD+ programmes. This study aims to upscale the forest carbon estimates using GeoEye-1 image and small footprint lidar data from small areas to a landscape level using RapidEye image. Species stratification was carried out based on the spectral separability curve of GeoEye-1 image, and comparison of mean intensity and mean plot height of the trees from lidar data. GeoEye-1 image and lidar data were segmented using region growing approach to delineate individual tree crowns; and the segmented crowns (CPA) of tree were further used to establish a relationship with field measured carbon and total trees’ height. Carbon stock measured from field, individual tree crown (ITC) segmentation approach and area-based approach (ABA) was compared at plot level using one-way ANOVA and post hoc Tukey comparison test. ITC-based carbon estimates was used to establish a relationship with spectral reflectance of RapidEye image variables (NDVI, RedEdge NDVI, PC1, single band of RedEdge, and NIR) to upscale the carbon at landscape level. One-way ANOVA resulted in a highly significant difference (p-value < 0.005) between the mean plot height and lidar intensity to stratify Shorea robusta and Other species successfully. ITC carbon stock estimation models of two major tree species explained about 88% and 79% of the variances, respectively, at 95% confidence level. The ABA estimated carbon was highly correlated (R2 = 0.83, RMSE = 20.04) to field measured carbon with higher accuracy than the ITC estimated carbon. A weak relationship was observed between the carbon stock and the RapidEye image variables. However, upscaling of carbon estimates from ABA is likely to improve the relationship of the RapidEye variables rather than upscaling the carbon estimates from ITC approach.  相似文献   

20.
In this paper, we present a methodology to map classes of degraded forest in the Eastern Amazon. Forest degradation field data, available in the literature, and 1-m resolution IKONOS image were linked with fraction images (vegetation, nonphotosynthetic vegetation (NPV), soil and shade) derived from spectral mixture models applied to a Satellite Pour L'observation de la Terre (SPOT) 4 multispectral image. The forest degradation map was produced in two steps. First, we investigated the relationship between ground (i.e., field and IKONOS data) and satellite scales by analyzing statistics and performing visual analyses of the field classes in terms of fraction values. This procedure allowed us to define four classes of forest at the SPOT 4 image scale, which included: intact forest; logged forest (recent and older logged forests in the field); degraded forest (heavily burned, heavily logged and burned forests in the field); and regeneration (old heavily logged and old heavily burned forest in the field). Next, we used a decision tree classifier (DTC) to define a set of rules to separate the forest classes using the fraction images. We classified 35% of the forest area (2097.3 km2) as intact forest. Logged forest accounted for 56% of the forest area and 9% of the forest area was classified as degraded forest. The resultant forest degradation map showed good agreement (86% overall accuracy) with areas of degraded forest visually interpreted from two IKONOS images. In addition, high correlation (R2=0.97) was observed between the total live aboveground biomass of degraded forest classes (defined at the field scale) and the NPV fraction image. The NPV fraction also improved our ability to mapping of old selectively logged forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号