首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evapotranspiration (ET) cannot be measured directly from satellite observations but remote sensing can provide a reasonably good estimate of evaporative fraction (EF), defined as the ratio of ET and available radiant energy. It is feasible to estimate EF using a contextual interpretation of radiometric surface temperature (To) and normalized vegetation index (NDVI) from multiple satellites. Recent studies have successfully estimated net radiation (Rn) over large heterogeneous areas for clear sky days using only remote sensing observations. With distributed maps of EF and Rn, it is now possible to explore the feasibility and robustness of ET estimation from multiple satellites. Here we present the results of an extensive inter-comparison of spatially distributed ET and related variables (NDVI, To, EF and Rn) derived from MODIS and AVHRR sensors onboard EOS Terra, NOAA14 and NOAA16 satellites respectively. Our results show that although, NDVI and To differ with the sensor response functions and overpass times, contextual space of NDVI-To diagram gives comparable estimates of EF. The utility of different sensors is demonstrated by validating the estimated ET results to ground flux stations over the Southern Great Plains with a root mean square error of 53, 51 and 56.24 Wm− 2, and a correlation of 0.84, 0.79 and 0.77 from MODIS, NOAA16 and NOAA14 sensors respectively.  相似文献   

2.
Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation affects soil moisture and net ecosystem CO2 exchange. We developed an algorithm to estimate ET using a semi-empirical Priestley-Taylor (PT) approach, which can be applied at a range of spatial scales. We estimated regional net radiation (Rnet) at monthly time scales using MODerate resolution Imaging Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between satellite-based estimates of monthly Rnet and field-measured Rnet, with a RMSE of less than 30 W m− 2. An adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based observations performed well, with a RMSE of 17 W m− 2 and a correlation of 0.90 for predicted monthly latent heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of modeled ET was reduced to 21.1 mm mon− 1, compared to 27.1 mm mon− 1 in the original CASA model. The monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean values of 110 ± 76 mm yr− 1 in deserts, 391 ± 176 mm yr− 1 in savannas and grasslands, and 840 ± 234 mm yr− 1 in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in arid areas, whereas Rnet controlled ET when mean annual precipitation was higher than approximately 400 mm yr− 1.  相似文献   

3.
Evapotranspiration (ET) using the Integral NOAA-imagery processing Chain (iNOAA-Chain) is quantified by implementing visible and thermal satellite information on a regional scale. ET is calculated based on the energy balance closure principle. The combination of evaporative fraction (EF), soil heat flux and instantaneous net radiation, results in an instantaneous spatial distribution of ET values. Surface broadband albedo and land surface temperature (LST) serve to determine EF. EF is derived using four methods based on NOAA/AVHRR satellite imagery. Instantaneous evapotranspiration, i.e. at time of satellite overpass, on European continental scale with emphasis on forest stands is estimated using the iNOAA-Chain. Finally, the estimated net radiation (Rn), soil heat fluxes (G0) and evaporative fraction and evapotranspiration at time of satellite overpass are validated against EUROFLUX site data for the growing season of 1997 (March-October). The regression line for the pooled Rn (iNOAA-Chain versus EUROFLUX) has a slope, intercept, Pearson product moment correlation coefficient (R2) and relative root mean square error (RRMSE) of respectively 0.943, 17.120, 0.926 and 5.5%. The soil heat fluxes, calculated with two approaches are not-well modelled with slopes smaller than − 3.000 and a R2 in the order of zero. We observe a slight underestimation of the iNOAA Chain estimated EF. The regression line for pooled EF data for the best performing method (SPLIT-method) has a slope of 0.935, an intercept of 0.041 and the R2 is 0.847. A pooled RRMSE EF value of 12.3% is found. The pooled slope, intercept, R2 and RRMSE for EF derived with SORT-method 1 are respectively 0.449, 0.251, 0.043 and 65.1%, with SORT-method 2, 0.567, 0.203, 0.174 and 39.1%, and with SORT-method 3, 0.568, 0.254, 0.288, and 32.8%. Also instantaneous evapotranspiration is underestimated with a pooled RRMSE on ET of 23.4%. The regression curve of pooled ET data for the best performing method has a slope of 0.889 an intercept of 15.880 and a Pearson product moment correlation coefficient of 0.771. The other method gives a slope of 0.781, an intercept of 17.541 and a R2 of 0.776. Error propagation analysis reveals that the relative error on evapotranspiration at satellite overpass time is at least 27%.  相似文献   

4.
Remote sensing of evapotranspiration and carbon uptake at Harvard Forest   总被引:1,自引:0,他引:1  
A land surface vegetation index, defined as the difference of microwave land surface emissivity at 19 and 37 GHz, was calculated for a heavily forested area in north central Massachusetts. The microwave emissivity difference vegetation index (EDVI) was estimated from satellite SSM/I measurements at the defined wavelengths and used to estimate land surface turbulent fluxes. Narrowband visible and infrared measurements and broadband solar radiation observations were used in the EDVI retrievals and turbulent flux estimations. The EDVI values represent physical properties of crown vegetation such as vegetation water content of crown canopies. The collocated land surface turbulent and radiative fluxes were empirically linked together by the EDVI values. The EDVI values are statistically sensitive to evapotranspiration fractions (EF) with a correlation coefficient (R) greater than 0.79 under all-sky conditions. For clear skies, EDVI estimates exhibit a stronger relationship with EF than normalized difference vegetation index (NDVI). Furthermore, the products of EDVI and input energy (solar and photosynthetically active radiation) are statistically significantly correlated to evapotranspiration (R = 0.95) and CO2 uptake flux (R = 0.74), respectively.  相似文献   

5.
We combined remote sensing and in-situ measurements to estimate evapotranspiration (ET) from riparian vegetation over large reaches of western U.S. rivers and ET by individual plant types. ET measured from nine flux towers (eddy covariance and Bowen ratio) established in plant communities dominated by five major plant types on the Middle Rio Grande, Upper San Pedro River, and Lower Colorado River was strongly correlated with Enhanced Vegetation Index (EVI) values from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the NASA Terra satellite. The inclusion of maximum daily air temperatures (Ta) measured at the tower sites further improved this relationship. Sixteen-day composite values of EVI and Ta were combined to predict ET across species and tower sites (r2 = 0.74); the regression equation was used to scale ET for 2000-2004 over large river reaches with Ta from meteorological stations. Measured and estimated ET values for these river segments were moderate when compared to historical, and often indirect, estimates and ranged from 851-874 mm yr− 1. ET of individual plant communities ranged more widely. Cottonwood (Populus spp.) and willow (Salix spp.) stands generally had the highest annual ET rates (1100-1300 mm yr− 1), while mesquite (Prosopis velutina) (400-1100 mm yr− 1) and saltcedar (Tamarix ramosissima) (300-1300 mm yr− 1) were intermediate, and giant sacaton (Sporobolus wrightii) (500-800 mm yr− 1) and arrowweed (Pluchea sericea) (300-700 mm yr− 1) were the lowest. ET rates estimated from the flux towers and by remote sensing in this study were much lower than values estimated for riparian water budgets using crop coefficient methods for the Middle Rio Grande and Lower Colorado River.  相似文献   

6.
We present a new formulation to derive evaporative fraction (EF) and evapotranspiration (ET) maps from remotely sensed data without auxiliary relationships or site-specific relationships. This formulation is based on Granger's complementary relationship and Priestley-Taylor's equation. The proposed model eliminates the wind function and resistance parameters commonly applied to ET calculation by including a relative evaporation parameter (ET/Epot). By combining this relative evaporation parameter, Granger's complementary relationship and Priestley-Taylor equation, we obtain a simple equation to estimate ET. We tested and validated the proposed formulation over the Southern Great Plains (SGP) region of the United States for seven clear sky days during March-October 2003. MODIS Atmospheric and Land products were the only source of data used in this study. Estimates of ET show an overall root mean square error and bias of 33.89 and − 10.96 Wm− 2, respectively. Our results suggest that the proposed approach is robust and valid for a wide range of atmospheric and surface conditions.  相似文献   

7.
Improvements to a MODIS global terrestrial evapotranspiration algorithm   总被引:43,自引:0,他引:43  
MODIS global evapotranspiration (ET) products by Mu et al. [Mu, Q., Heinsch, F. A., Zhao, M., Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111, 519-536. doi: 10.1016/j.rse.2007.04.015] are the first regular 1-km2 land surface ET dataset for the 109.03 Million km2 global vegetated land areas at an 8-day interval. In this study, we have further improved the ET algorithm in Mu et al. (2007a, hereafter called old algorithm) by 1) simplifying the calculation of vegetation cover fraction; 2) calculating ET as the sum of daytime and nighttime components; 3) adding soil heat flux calculation; 4) improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance; 5) separating dry canopy surface from the wet; and 6) dividing soil surface into saturated wet surface and moist surface. We compared the improved algorithm with the old one both globally and locally at 46 eddy flux towers. The global annual total ET over the vegetated land surface is 62.8 × 103 km3, agrees very well with other reported estimates of 65.5 × 103 km3 over the terrestrial land surface, which is much higher than 45.8 × 103 km3 estimated with the old algorithm. For ET evaluation at eddy flux towers, the improved algorithm reduces mean absolute bias (MAE) of daily ET from 0.39 mm day−1 to 0.33 mm day−1 driven by tower meteorological data, and from 0.40 mm day−1 to 0.31 mm day−1 driven by GMAO data, a global meteorological reanalysis dataset. MAE values by the improved ET algorithm are 24.6% and 24.1% of the ET measured from towers, within the range (10-30%) of the reported uncertainties in ET measurements, implying an enhanced accuracy of the improved algorithm. Compared to the old algorithm, the improved algorithm increases the skill score with tower-driven ET estimates from 0.50 to 0.55, and from 0.46 to 0.53 with GMAO-driven ET. Based on these results, the improved ET algorithm has a better performance in generating global ET data products, providing critical information on global terrestrial water and energy cycles and environmental changes.  相似文献   

8.
Numerous models of evapotranspiration have been published that range in data-driven complexity, but global estimates require a model that does not depend on intensive field measurements. The Priestley-Taylor model is relatively simple, and has proven to be remarkably accurate and theoretically robust for estimates of potential evapotranspiration. Building on recent advances in ecophysiological theory that allow detection of multiple stresses on plant function using biophysical remote sensing metrics, we developed a bio-meteorological approach for translating Priestley-Taylor estimates of potential evapotranspiration into rates of actual evapotranspiration. Five model inputs are required: net radiation (Rn), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), maximum air temperature (Tmax), and water vapor pressure (ea). Our model requires no calibration, tuning or spin-ups. The model is tested and validated against eddy covariance measurements (FLUXNET) from a wide range of climates and plant functional types—grassland, crop, and deciduous broadleaf, evergreen broadleaf, and evergreen needleleaf forests. The model-to-measurement r2 was 0.90 (RMS = 16 mm/month or 28%) for all 16 FLUXNET sites across 2 years (most recent data release). Global estimates of evapotranspiration at a temporal resolution of monthly and a spatial resolution of 1° during the years 1986-1993 were determined using globally consistent datasets from the International Satellite Land-Surface Climatology Project, Initiative II (ISLSCP-II) and the Advanced Very High Resolution Spectroradiometer (AVHRR). Our model resulted in improved prediction of evapotranspiration across water-limited sites, and showed spatial and temporal differences in evapotranspiration globally, regionally and latitudinally.  相似文献   

9.
In this study, we used the remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS), meteorological and eddy flux data and an artificial neural networks (ANNs) technique to develop a daily evapotranspiration (ET) product for the period of 2004-2005 for the conterminous U.S. We then estimated and analyzed the regional water-use efficiency (WUE) based on the developed ET and MODIS gross primary production (GPP) for the region. We first trained the ANNs to predict evapotranspiration fraction (EF) based on the data at 28 AmeriFlux sites between 2003 and 2005. Five remotely-sensed variables including land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference water index (NDWI), leaf area index (LAI) and photosynthetically active radiation (PAR) and ground-measured air temperature and wind velocity were used. The daily ET was calculated by multiplying net radiation flux derived from remote sensing products with EF. We then evaluated the model performance by comparing modeled ET with the data at 24 AmeriFlux sites in 2006. We found that the ANNs predicted daily ET well (R2 = 0.52-0.86). The ANNs were applied to predict the spatial and temporal distributions of daily ET for the conterminous U.S. in 2004 and 2005. The ecosystem WUE for the conterminous U.S. from 2004 to 2005 was calculated using MODIS GPP products (MOD17) and the estimated ET. We found that all ecosystems' WUE-drought relationships showed a two-stage pattern. Specifically, WUE increased when the intensity of drought was moderate; WUE tended to decrease under severe drought. These findings are consistent with the observations that WUE does not monotonously increase in response to water stress. Our study suggests a new water-use efficiency mechanism should be considered in ecosystem modeling. In addition, this study provides a high spatial and temporal resolution ET dataset, an important product for climate change and hydrological cycling studies for the MODIS era.  相似文献   

10.
The objective of this research is to develop a global remote sensing evapotranspiration (ET) algorithm based on Cleugh et al.'s [Cleugh, H.A., R. Leuning, Q. Mu, S.W. Running (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment 106, page 285-304- 2007 (doi: 10.1016/j.rse.2006.07.007).] Penman-Monteith based ET (RS-PM). Our algorithm considers both the surface energy partitioning process and environmental constraints on ET. We use ground-based meteorological observations and remote sensing data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate global ET by (1) adding vapor pressure deficit and minimum air temperature constraints on stomatal conductance; (2) using leaf area index as a scalar for estimating canopy conductance; (3) replacing the Normalized Difference Vegetation Index with the Enhanced Vegetation Index thereby also changing the equation for calculation of the vegetation cover fraction (FC); and (4) adding a calculation of soil evaporation to the previously proposed RS-PM method.We evaluate our algorithm using ET observations at 19 AmeriFlux eddy covariance flux towers. We calculated ET with both our Revised RS-PM algorithm and the RS-PM algorithm using Global Modeling and Assimilation Office (GMAO v. 4.0.0) meteorological data and compared the resulting ET estimates with observations. Results indicate that our Revised RS-PM algorithm substantially reduces the root mean square error (RMSE) of the 8-day latent heat flux (LE) averaged over the 19 towers from 64.6 W/m2 (RS-PM algorithm) to 27.3 W/m2 (Revised RS-PM) with tower meteorological data, and from 71.9 W/m2 to 29.5 W/m2 with GMAO meteorological data. The average LE bias of the tower-driven LE estimates to the LE observations changed from 39.9 W/m2 to − 5.8 W/m2 and from 48.2 W/m2 to − 1.3 W/m2 driven by GMAO data. The correlation coefficients increased slightly from 0.70 to 0.76 with the use of tower meteorological data. We then apply our Revised RS-PM algorithm to the globe using 0.05° MODIS remote sensing data and reanalysis meteorological data to obtain the annual global ET (MODIS ET) for 2001. As expected, the spatial pattern of the MODIS ET agrees well with that of the MODIS global terrestrial gross and net primary production (MOD17 GPP/NPP), with the highest ET over tropical forests and the lowest ET values in dry areas with short growing seasons. This MODIS ET product provides critical information on the regional and global water cycle and resulting environment changes.  相似文献   

11.
12.
Estimation of diurnal air temperature using MSG SEVIRI data in West Africa   总被引:6,自引:0,他引:6  
Spatially distributed air temperature data with high temporal resolution are desired for several modeling applications. By exploiting the thermal split window channels in combination with the red and near infrared channels of the geostationary MSG SEVIRI sensor, multiple daily air temperature estimates can be achieved using the contextual temperature-vegetation index method. Air temperature was estimated for 436 image acquisitions during the 2005 rainy season over West Africa and evaluated against in situ data from a field test site in Dahra, Northern Senegal. The methodology was adjusted using data from the test site resulting in RMSE = 2.55 K, MBE = − 0.30 K and R2 = 0.63 for the estimated versus observed air temperatures. A spatial validation of the method using 12 synoptic weather stations from Senegal and Mali within the Senegal River basin resulted in overall values of RMSE = 2.96 K, MBE = − 1.11 K and R2 = 0.68. The daytime temperature curve is interpolated using a sine function based on the multiple daily air temperature estimates from the SEVIRI data. These estimates (covering the 8:00-20:00 UCT time window) were in good agreement with observed values with RMSE = 2.99 K, MBE = − 0.70 K and R2 = 0.64. The temperature-vegetation index method was applied as a moving window technique to produce distributed maps of air temperature with 15 min intervals and 3 km spatial resolution for application in a distributed hydrological model.  相似文献   

13.
Quantification of land-surface evapotranspiration (ET) is highly significant in water resources management, climate change studies, and numerical weather prediction. The constant reference evaporative fraction method (EFr, the ratio of the actual to reference ET), which assumes that the daily EFr is equal to that at the satellite overpass time, is a scheme that has been widely applied to upscale remotely sensed instantaneous ET to daily ET. To overcome the difficulties encountered in the acquisition of tower-based meteorological variables, this study investigates the feasibility of using publicly available weather forecast information to estimate the daily reference ET using the constant EFr method. A two-source energy balance model is adopted to compute the instantaneous ET using Moderate-Resolution Imaging Spectroradiometer (MODIS) remote-sensing data acquired between January 2011 and October 2012 at the Yucheng Comprehensive Experimental Station in the North China Plain. The results show that the daily maximum and minimum air temperatures from weather forecast information are consistent with the corresponding ground-based measurements, with a bias of 0.8 K and a root mean square error (RMSE) of <2.0 K. The daily global solar radiation and daily wind speed were poorly forecast when compared with the ground-based measurements. Using the meteorological variables from the daily weather forecast information produced a small bias of 0.1 mm day–1 and an RMSE of 0.6 mm day–1 when the estimated daily reference ET was compared with that derived using the ground-based meteorological measurements. When the remotely sensed instantaneous ET and half-hourly reference ET were as accurate as the ground-based measurements, the upscaling method produced the daily ET, using the meteorological variables from the weather forecast information, with a bias of 0.1 mm day–1 and an RMSE of 0.7 mm day–1.  相似文献   

14.
To reduce environment pollution from cropping activities, a reliable indicator of crop N status is needed for site-specific N management in agricultural fields. Nitrogen Nutrition Index (NNI) can be a valuable candidate, but its measurement relies on tedious sampling and laboratory analysis. This study proposes a new spectral index to estimate plant nitrogen (N) concentration, which is a critical component of NNI calculation. Hyperspectral reflectance data, covering bands from 325 to 1075 nm, were collected using a ground-based spectroradiometer on corn and wheat crops at different growth stages from 2005 to 2008. Data from 2006 to 2008 was used for new index development and the comparison of the new index with some existing indices. Data from 2005 was used to validate the best index for predicting plant N concentration. Additionally, a hyperspectral image of corn field in 2005 was acquired using an airborne Compact Airborne Spectrographic Imager (CASI), and the corresponding plant N concentration was obtained by conventional laboratory methods on selected area. These data were also used for validation. A new N index, named Double-peak Canopy Nitrogen Index (DCNI), was developed and compared to the existing indices that were used for N detection. In this study, DCNI was the best spectral index for predicting plant N concentration, with R2 values of 0.72 for corn, 0.44 for wheat, and 0.64 for both species combined, respectively. The validation using an independent ground-based spectral database of corn acquired in 2005, yielded an R2 value of 0.62 and a root-mean-square-error (RMSE) of 2.7 mg N g− 1 d.m. The validation using the CASI spectral information, DCNI calculation was related to actual corn N concentration with a R2 value of 0.51 and a RMSE value of 3.1 mg N g− 1 d.m. It is concluded that DCNI, in association with indices related to biomass, has a good potential for remote assessment of NNI.  相似文献   

15.
Model-data fusion offers considerable promise in remote sensing for improved state and parameter estimation particularly when applied to multi-sensor image products. This paper demonstrates the application of a ‘multiple constraints’ model-data fusion (MCMDF) scheme to integrating AMSR-E soil moisture content (SMC) and MODIS land surface temperature (LST) data products with a coupled biophysical model of surface moisture and energy budgets for savannas of northern Australia. The focus in this paper is on the methods, difficulties and error sources encountered in developing an MCMDF scheme and enhancements for future schemes. An important aspect of the MCMDF approach emphasized here is the identification of inconsistencies between model and data, and among data sets.The MCMDF scheme was able to identify that an inconsistency existed between AMSR-E SMC and LST data when combined with the coupled SEB-MRT model. For the example presented, an optimal fit to both remote sensing data sets together resulted in an 84% increase in predicted SMC and 0.06% increase for LST relative to the fit to each data set separately. That is the model predicted on average cooler LST's (∼ 1.7 K) and wetter SMC values (∼ 0.04 g cm− 3) than the satellite image products. In this instance we found that the AMSR-E SMC data on their own were poor constraints on the model. Incorporating LST data via the MCMDF scheme ameliorated deficiencies in the SMC data and resulted in enhanced characterization of the land surface soil moisture and energy balance based on comparison with the MODIS evapotranspiration (ET) product of Mu et al. [Mu, Q., Heinsch, F.A, Zhao, M. and Running, S.W. (in press), Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment.]. Canopy conductance, gC, and latent heat flux, λE, from the MODIS ET product were in good agreement with RMSEs for gC = 0.5 mm s− 1 and for λE = 18 W m− 2, respectively. Differences were attributable to a greater canopy-to-air vapor pressure gradient in the MCMDF approach obtained from a more realistic partitioning of soil surface and canopy temperatures.  相似文献   

16.
Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for closed forest stands. There is a need for extending this approach to other land cover types, in order to carry out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD). Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits. Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity (GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD (R2 = 0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land surface temperature (LST) (R2 = 0.84 and 0.71). One probable reason for these results is that several controls on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely explained by diurnal LST in exponential relationships (R2 = 0.89 and 0.83), net ecosystem exchange (NEE) was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple exponential regressions (R2 = 0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE, compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.  相似文献   

17.
Satellite remote sensing has the potential to contribute to plant phenology monitoring at spatial and temporal scales relevant for regional and global scale studies. Historically, temporal composites of satellite data, ranging from 8 days to 16 days, have been used as a starting point for satellite-derived phenology data sets. In this study we assess how the temporal resolution of such composites affects the estimation of the start of season (SOS) by: 1) calibrating a relationship between satellite derived SOS with in situ leaf unfolding (LU) of trembling aspen (Populus tremuloides) across Canada and 2) quantifying the sensitivity of calibrated satellite SOS estimates and trends, over Canadian broadleaf forests, to the temporal resolution of NDVI data. SOS estimates and trends derived from daily NDVI data were compared to SOS estimates and trends derived from multiday NDVI composites that retain the exact date of the maximum NDVI value or that assume the midpoint of the multiday interval as the observation date. In situ observations of LU dates were acquired from the PlantWatch Canada network. A new Canadian database of cloud and snow screened daily 1-km resolution National Oceanic and Atmospheric Administration advanced very high resolution radiometer surface reflectance images was used as input satellite data. The mean absolute errors of SOS dates with respect to in situ LU dates ranged between 13 and 40 days. SOS estimates from NDVI composites that retain the exact date of the maximum NDVI value had smaller errors (~ 13 to 20 days). The sensitivity analysis reinforced these findings: SOS estimates from NDVI composites that use the exact date had smaller absolute deviations from the LU date (0 to − 5 days) than the SOS estimates from NDVI composites that use the midpoint (− 2 to − 27 days). The SOS trends between 1985 and 2007 were not sensitive to the temporal resolution or compositing methods. However, SOS trends at individual ecozones showed significant differences with the SOS trends from daily NDVI data (Taiga plains and the Pacific maritime zones). Overall, our results suggest that satellite based estimates of vegetation green-up dates should preferably use sub-sampled NDVI composites that include the exact observation date of the maximum NDVI to minimize errors in both, SOS estimates and SOS trend analyses. For trend analyses alone, any of the compositing methods could be used, preferably with composite intervals of less than 28 days. This is an important finding, as it suggests that existing long-term 10-day or 15-day NDVI composites could be used for SOS trend analyses over broadleaf forests in Canada or similar areas. Future studies will take advantage of the growing in situ phenology networks to improve the validation of satellite derived green-up dates.  相似文献   

18.
Three ocean colour algorithms, OC4v6, Carder and OC5 were tested for retrieving Chlorophyll-a (Chla) in coastal areas of the Bay of Bengal and open ocean areas of the Arabian Sea. Firstly, the algorithms were run using ~ 80 in situ Remote Sensing Reflectance, (Rrs(λ)) data collected from coastal areas during eight cruises from January 2000 to March 2002 and the output was compared to in situ Chla. Secondly, the algorithms were run with ~ 20 SeaWiFS Rrs(λ) and the results were compared with coincident in situ Chla. In both cases, OC5 exhibited the lowest log10-RMS, bias, had a slope close to 1 and this algorithm appears to be the most accurate for both coastal and open ocean areas. Thirdly the error in the algorithms was regressed against Total Suspended Material (TSM) and Coloured Dissolved Organic Material (CDOM) data to assess the co-variance with these parameters. The OC5 error did not co-vary with TSM and CDOM. OC4v6 tended to over-estimate Chla > 2 mg m−3 and the error in OC4v6 co-varied with TSM. OC4v6 was more accurate than the Carder algorithm, which over-estimated Chla at concentrations > 1 mg m−3 and under-estimated Chla at values < 0.5 mg m−3. The error in Carder Chla also co-varied with TSM. The algorithms were inter-compared using > 5500 SeaWiFS Rrs(λ) data from coastal to offshore transects in the Northern Bay of Bengal. There was good agreement between OC4v6 and OC5 in open ocean waters and in coastal areas up to 2 mg m−3. There was a strong divergence between Carder and OC5 in open ocean and coastal waters. OC4v6 and Carder tended to over-estimate Chla in coastal areas by a factor of 2 to 3 when TSM > 25 g m−3. We strongly recommend the use of OC5 for coastal and open ocean waters of the Bay of Bengal and Arabian Sea. A Chla time series was generated using OC5 from 2000 to 2003, which showed that concentrations at the mouths of the Ganges reach a maxima (~ 5 mg m−3) in October and November and were 0.08 mg m−3 further offshore increasing to 0.2 mg m−3 during December. Similarly in early spring from February to March, Chla was 0.08 to 0.2 mg m−3 on the east coast of the Bay.  相似文献   

19.
Bahia grass (Paspalum notatum Flugge.) plants were grown in silica sand and irrigated daily with one of five levels of Zn (0, 0.5, 25, 50, or 100 mg l−1) to determine the effects of the heavy metal on the growth and development of plant canopies. Healthy and stressed plants were measured with two hyperspectral imagers, laser-induced fluorescence spectroscopy (LIFS), and laser-induced fluorescence imaging (LIFI) systems in order to determine if the four handheld remote sensing instruments were equally capable of detecting plant stress and measuring canopy chlorophyll levels in bahia grass. Symptoms of bahia grass plants grown at deficient (0 mg l−1) or toxic (25, 50, or 100 mg l−1) concentrations of Zn were dominated by leaf chlorosis and plant stunting. Leaf fresh weight, leaf dry weight, CO2 assimilation, total chlorophyll, and leaf thickness followed (+) quadratic models in which control plants (0.5 mg l−1 Zn) exhibited higher responses than plants grown at either deficient or toxic levels of Zn. Normalized difference vegetation index [NDVI=(NIR−Red)/(NIR+Red)] and ratio vegetation index [RVI=R750/R700, in which R denotes reflectance] values were calculated for calibrated digital images from both hyperspectral imagers. The NDVI and RVI values from both hyperspectral imagers were fit best by (+) quadratic models when treatments were constrained between 0 and 100 mg l−1 Zn, but were fit best by linear regression models with (−) slopes when treatments were constrained between 0.5 and 100 mg l−1 Zn. Furthermore, both NDVI and RVI algorithms were effective in predicting the concentrations of chlorophyll in canopies of bahia grass grown at the various levels of Zn. In contrast, red/far-red (R/FR) fluorescence ratios estimated from leaf fluorescence values measured with the LIFS and LIFI instruments were fit best by (−) quadratic models when treatments were constrained between 0 and 100 mg l−1 Zn, but were fit best by linear regression models with (+) slopes when treatments were constrained between 0.5 and 100 mg l−1 Zn. A series of regression analyses were conducted among plant biometric, biochemical, and leaf anatomical parameters (treated as independent variables) and the remote sensing algorithms, NDVI, RVI, blue/green (BL/GR), and R/FR (treated as dependant variables). In general, residuals were significantly higher for NDVI and RVI models compared to the BL/GR and R/FR models indicating that the NDVI and RVI algorithms were able to measure total chlorophyll and plant biomass more accurately than the BL/GR and R/FR algorithms. However, unique capabilities of LIFS and LIFI instruments continue to argue for the development of laser-induced fluorescence remote sensing technologies.  相似文献   

20.
Accurate remote assessment of phytoplankton chlorophyll a (chla) concentration is particularly challenging in turbid, productive waters. Recently a conceptual model containing reflectance in three spectral bands in the red and near infra-red range of the spectrum was suggested for retrieving chla concentrations in turbid productive waters; it was calibrated and validated in lakes and reservoirs in Nebraska and Iowa. The objective of this paper is to evaluate the performance of this three band model as well as its special case, the two-band model to estimate chla concentration in Chesapeake Bay, as representative of estuarine Case II waters, and to assess the accuracy of chla retrieval. To evaluate the model performance, dual spectroradiometers were used to measure subsurface spectral radiance reflectance in the visible and near infra-red range of the spectrum. Water samples were collected concurrently and contained widely variable chla (9 to 77.4 mg/m3) and total suspended solids (7-65 mg/L dry wt). Colored dissolved organic matter (CDOM) absorption at 440 nm was 0.20 to 2.50 m− 1; Secchi disk transparency ranged from 0.28 to 1.5 m. The two- and three-band models were spectrally tuned to select the spectral bands for most accurate chla estimation. Strong linear relationships were established between analytically measured chla and both the three-band model [R− 1(675)-R− 1(695)] × R(730) and the two-band model R(720)/R(670), where R(λ) is reflectance at wavelength λ. The three-band model accounted for 81% of variation in chla and allowed estimation of chla with a root mean square error (RMSE) of less than 7.9 mg/m3, whereas the two-band model accounted for 79% of chla variability and RMSE of chla estimation was below 8.4 mg/m3. The three-band model with MERIS spectral bands allows accurate chla estimation with RMSE below 9.1 mg/m3. Two-band model with SeaWiFS bands and MODIS 667 nm and 748 nm bands can estimate chla with RMSE below 11 mg/m3. The findings underlined the rationale behind the conceptual model and demonstrated the robustness of this algorithm for chla retrieval in turbid, productive estuarine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号