共查询到18条相似文献,搜索用时 78 毫秒
1.
由于基本VRP算法收敛速度慢,易于陷于局部最优等缺点,现对VRP进行了一些改进,在每次循环中所有蚂蚁都是从起点出发结束于终点,同时在原始的蚁群算法上增加了节点信息素更新策略以及对所有节点改进使得每个节点都有记忆功能,提出了一种基于基本蚁群算法的有节点信息素更新和记忆功能的算法模型.仿真结果表明,基于改进的蚁群算法模型在寻找最优解时表现出很高的效率,优于现有的启发式算法的解,是一种有效的算法,该算法也适用于并行计算和应用. 相似文献
2.
提出一种改进的蚁群算法,新算法利用遗传算法对蚁群算法的参数进行优化,然后利用新的蚁群算法求解基本的车辆路径问题。改进的蚁群算法具有全局搜索能力强的特点,仿真结果表明,新算法的优化质量和效率都优于传统蚁群算法。 相似文献
3.
针对蚁群算法求解VRP问题时收敛速度慢,求解质量不高的缺点,把城市和仓库间的距离矩阵和路径节约矩阵信息融入到初始信息素矩阵中作为启发式信息引入到蚁群算法中用于求解有容量限制的车辆路径规划问题(CVRP),在三个基准数据集上的实验研究表明,基于启发式信息的蚁群算法与基本蚁群算法相比能够以较快的速度收敛到较好的解。 相似文献
4.
蚁群算法在解决车辆路径问题(VRP)时存在过早收敛于局部最优解、收敛速度慢等问题,并且由于蚁群算法的参数选择没有严格规定,如果参数选择不当,将影响其寻找最优解的效率。为解决上述问题,将DNA算法中的交叉变异思想应用于基本蚁群算法中,提出一种新的DNA-蚁群算法,将基本蚁群算法中的参数进行DNA交叉变异,有效控制蚁群算法的参数选择,从而得到一组最优参数来求解VRP模型。实验结果表明,DNA-蚁群算法能有效解决车辆路径优化问题,更快寻找到全局最优解或较优解,提高了基本蚁群算法的寻优能力和效率。 相似文献
5.
蚁群优化算法求解TSP问题研究 总被引:2,自引:0,他引:2
介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以Oliver30和att48为例给出了实验结果,说明了该混合算法的有效性。 相似文献
6.
蚁群算法是受自然界中蚁群搜索食物行为启发而提出的一种智能优化算法,通过介绍蚁群觅食过程中基于信息素的最短路径的搜索策略,给出了基于M ATLAB的蚁群算法在车辆路径问题中的应用,针对蚁群算法存在的过早收敛问题,加入2-opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 相似文献
7.
8.
基于改进蚁群算法的车辆路径优化问题研究 总被引:2,自引:0,他引:2
物流活动中需要找出各个配货节点之间的最短路径,用以指导物流车辆调度,进而节约物流成本。提出解决车辆路径优化问题的方法,针对蚁群算法的缺点,分别对信息素更新策略、启发因子进行改进,并引入搜索热区机制,有效解决了蚁群算法的缺陷。最后,以哈尔滨市局部地图为原型,应用MATLAB软件对改进蚁群算法求解车辆路径优化问题的性能进行仿真,并与基本蚁群算法对比分析,验证了改进蚁群算法的有效性和可行性。 相似文献
9.
可行解优先蚁群算法对车辆路径问题的求解 总被引:2,自引:2,他引:0
针对车辆路径问题,给出了一种利用蚁群算法求解该问题的新方法。借鉴K-TSP问题的求解方法,优先构造可行解,通过对较优解路径上信息素的增强,最终得到问题的最优解或较优解。实验结果表明,用本方法求解车辆路径问题,简化了求解过程,缩短了求解时间,解决了无可行解的问题。 相似文献
10.
多目标车辆路径问题(MVRP)在物流研究领域具有重要的理论和现实意义,但由于各目标之间的相互联系和制约使得建模和求解具有很大的难度.在众多求解方法中,蚁群算法对解决类似组合优化问题具有明显的优势,蚁群算法已成功应用于一系列单目标优化问题,但对多目标问题的研究还处于起步阶段.侧重结合目标约束法与蚁群算法来研究多目标车辆路径问题,使各优化目标之间形成既彼此独立,又相互联系和制约的机制,最终求得多目标优化意义下的一种平衡解.仿真结果证明该算法具有良好的收敛性和运行效率,对于物流运输的实际运作具有重要的现实意义. 相似文献
11.
旅行商问题作为组合优化研究中最具挑战的问题之一, 自被提出以来就引起了学术界的广泛关注并提出了大量的方法来解决它. 蚁群算法是求解复杂组合优化问题的一种启发式仿生进化算法, 是求解旅行商问题的有效手段. 本文分别介绍蚁群算法中几个有代表性的算法, 综述了蚁群算法的改进、融合和应用的文献研究进展, 以评价近年来不同版本的蚁群算法为解决旅行商问题的发展和研究成果, 并针对改进蚁群算法结构框架、算法参数的设置及优化、信息素优化和混合算法等方面, 对现被提出的改进算法进行了分类综述. 对蚁群算法在未来对旅行商问题及其他不同领域的研究内容和研究热点的进一步发展提供了展望和依据. 相似文献
12.
13.
为求解带时间窗车辆路径问题,提出一种混合蚁群优化算法,利用两个隔离的种群同时进化的方式,有效避免了两种算法的缺点,种群Ⅰ应用蚁群算法可以丰富解得多样性,种群Ⅱ则应用粒子群算法来强化进化过程.种群Ⅰ通过局部搜索、复制、重组和选择等操作来保持种群广泛搜索的能力,种群Ⅱ则依靠复制、局部优化、交叉和选择等操作以快速获得高质量解并经常更新得到的解.对100个基准问题进行仿真测试,实验结果表明,与其他算法相比,利用蚁群粒子群混合优化算法能够快速有效地获得近似最优解. 相似文献
14.
引入了蚂蚁算法来解决基本车辆路径问题,设计了合适的算法程序,通过实验表明了蚂蚁算法能够有效地求解VRP问题。 相似文献
15.
16.
运输调度问题的蚁群算法研究 总被引:3,自引:0,他引:3
蚁群算法是一种用于求解复杂组合优化的较新的启发式算法.本文简述了蚁群算法的基本原理及算法模型,通过分析研究现状指出了蚁群算法在实际应用中的局限性,最后给出解决一般运输调度问题的蚁群算法,并分析了其今后的发展方向. 相似文献
17.
18.
对于求解带时间窗口车辆路径问题,提出一种融合邻域搜索策略的改进蚁群算法,针对时间窗口特性,将等待时间加入到蚁群算法的状态转移规则之中。为提升算法的局部寻优能力,设计多种节点删除操作和插入操作对得到的路径进行邻域搜索。最后利用Solomon标准算例对改进算法进行测试,与目前已知最优解对比,实验结果表明改进后的蚁群算法对带时间窗口的车辆路径问题有较好的适用性。 相似文献