首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hot carrier and multiple exciton extractions from lead salt quantum dots (QDs) to TiO(2) single crystals have been reported. Implementing these ideas on practical solar cells likely requires the use of nanocrystalline TiO(2) thin films to enhance the light harvesting efficiency. Here, we report 6.4 ± 0.4 fs electron transfer time from PbS QDs to TiO(2) nanocrystalline thin films, suggesting the possibility of extracting hot carriers and multiple excitons in solar cells based on these materials.  相似文献   

2.
TiO2 films were prepared on glass substrates using the sol-gel process for a dye-sensitized solar cell application. The TiO2 sol was prepared using hydrolysis/polycondensation. Titanium (IV) Tetra Isopropoxide (TTIP) was used as precursor and Nitric acid (HNO3) was used as a catalyst for the peptization. The crystal structure and morphology of the prepared materials were characterized by XRD, and an SEM. The observations confirmed the nanocrystalline nature of the TiO2. The reaction parameters, such as the catalyst concentrations, the calcination time, and the calcination temperature were varied during the synthesis in order to achieve nanosize TiO2 particles. The prepared TiO2 particles were coated onto FTO glass using a screen printing technique. The prepared TiO2 films were characterized by UV-vis. The TiO2 particles calcinated at low temperatures showed an anatase phase they grew into a rutile phase when the calcination temperature increased. The size and structure of the TiO2 particles were adjusted to specific surface areas. It was found that the conversion efficiency of the DSSC was highly affected by the properties of the TiO2 particles.  相似文献   

3.
染料敏化TiO2纳米晶太阳能电池的研究   总被引:1,自引:1,他引:0  
通过改变TiO2 膜热处理温度来研究染料RuL2 (SCN ) 2 敏化TiO2 纳米晶太阳能电池光电性能。得热处理温度对TiO2 膜的质量有很大的影响。染料RuL2 (SCN) 2 的吸收光谱表明 ,染料RuL2 (SCN) 2 在可见光有很宽且强的吸收 ,是一种很理想的敏化剂。用XRD和UV -Vis等手段分别表征了TiO2 膜和染料。  相似文献   

4.
Transmission electronic microscopy is used to study the structure, morphology and orientation of thin TiO2 films prepared by reactive magnetron sputtering on glass slides at different substrate temperatures (100 to 400 °C). The TiO2 films are used to purify a dye in waste water. The microstructure and photocatalytic reactivity of TiO2 films have been shown to be functions of deposition temperature. In the temperature range examined, all film samples have a porous nanostructure and the dimension of particles grown with increasing deposition temperature. Films are amorphous at temperatures of 100 °C and only anatase phase forms at 200 °C and above. Films deposited between 200 to 300 °C show a preferred orientation, while films at 400 °C change into complete random orientation. Deposition at 250 °C yields high efficiency in photocatalytic degradation owing to the high degree of preferred orientation and nanocrystalline/nanoporous anatase phase. © 1998 Kluwer Academic Publishers  相似文献   

5.
The nanostructured TiO2 films have deposited on SnO2:F (FTO) coated glass substrate by spray pyrolysis technique at different substrate temperatures of 200-500 degrees C. The structural, surface morphological and optical properties of TiO2 films significantly vary with the substrate temperature. The surface of the TiO2 films deposited at 400 degrees C shows the nanoflakes and short nanorods (approximately 130 nm) like structures while the TiO2 films prepared at 500 degrees C shows only the nanoflakes like structures. The band gap of the TiO2 films prepared at higher temperatures (300-500 degrees C) becomes narrow due to presence the rutile phases in their crystal structure. Ruthenium (II) complex as a dye, KI/I2 as an electrolyte and carbon on FTO glass as a counter electrode has used to fabricate the dye-sensitized solar cell (DSC). The TiO2 film deposited at 400 degrees C has showed the best photovoltaic performance in DSC with the efficiency of 3.81%, the photovoltage of 773 mV, the photocurrent of 8.34 mA/cm2, and the fill factor of 56.17%. The photovoltage of the DSC increases with the increase of substrate temperature during the deposition of TiO2 films. Moreover, all the DSCs exhibit reasonably high fill factor value.  相似文献   

6.
Effects of the addition of a supramolecular assembly of cetyltrimethylammonium bromide in SiO2-TiO2 gel films on the formation of anatase type TiO2 nanocrystals with hot-water treatment were investigated. Anatase nanocrystals were formed in the whole SiO2-TiO2 gel films with the addition of cetyltrimethylammonium bromide by the treatment, whereas the nanocrystals were formed only on the film surface in the case of gel films without cetyltrimethylammonium bromide. Cetyltrimethylammonium bromide molecules in the SiO2-TiO2 gel films were completely removed by the hot-water treatment and the following UV irradiation. In the usual procedure for preparation of porous materials, the removal of template molecular assemblies required high temperature treatment over 400 degrees C. In this system, all the processes were performed at temperatures less than 100 degrees C. Additionally, the porous structure produced by the removal of micellar assembly allowed anatase nanocrystals to be formed inside the films. Therefore, the method presented in this work provides us with the novel photocatalyst coatings of porous membrane with highly-dispersed TiO2 nanocrystals via low temperature process.  相似文献   

7.
柔性染料敏化太阳能电池TiO2薄膜的低温制备技术   总被引:1,自引:0,他引:1  
简要介绍了柔性染料敏化太阳能电池的特点,综述了柔性染料敏化太阳能电池中TiO2纳米晶半导体薄膜光电极的低温制备技术.  相似文献   

8.
A simple method for the fabrication of highly photoactive nanocrystalline two-layer TiO(2) electrodes for solar cell applications is presented. Diluted titanium acetylacetonate has been used as a precursor for covering SnO(2):F (FTO) films with dense packed TiO(2) nanocrystallites. The nanoporous thick TiO(2) film follows the dense packed thin TiO(2) film as a second layer. For the latter, amorphous TiO(2) nanoparticles have been successfully synthesized by a sol-gel technique in an acidic environment with pH<1 and hydrothermal growth at a temperature of 200?°C. The acidic nanoparticle gel was neutralized by basic ammonia and a TiO(2) gel of pH?5 was obtained; this pH value is higher than the recently reported value of 3.1 (Park et al 2005 Adv. Mater. 17 2349-53). Highly interconnected, nanoporous, transparent and active TiO(2) films have been fabricated from the pH?5 gel. SEM, AFM and XRD analyses have been carried out for investigation of the crystal structure and the size of nanoparticles as well as the surface morphology of the films. Investigation of the photocurrent-voltage characteristics has shown improvement in cell performance along with the modification of the surface morphology, depending on pH of the TiO(2) gel. Increasing the pH of the gel from 2.1 to 5 enhanced the overall conversion efficiency of the dye-sensitized solar cells by approximately 30%. An energy conversion efficiency of 8.83% has been achieved for the cell (AM1.5, 100 mWcm(-2) simulated sunlight) compared to 6.61% efficiency in the absence of ammonia in the TiO(2) gel.  相似文献   

9.
Interlinked ribbon-like TiO2 films were prepared by micro-arc oxidation (MAO) process and subsequent chemical-treatment of titanium substrate. The chemical-treatment included two steps: firstly, alkali treatment was performed on the surface of the porous TiO2 films, and then the samples were ion-exchanged in acid aqueous solution. The phase and microstructure of the samples were characterized by XRD, FE-SEM and TEM. It is found that ribbon-like sodium titanate is formed by alkali treatment, and its morphology remains unchanged after acid-treatment. However, the phase compositions of the samples surface change into TiO2 (MAOC-TiO2) after heat-treatment above 500 degrees C. The hydrogen sensing properties at low concentrations were investigated. The result shows that such ribbon-like TiO2 films present high sensing properties at a low temperature.  相似文献   

10.
染料敏化纳米晶TiO2薄膜太阳能电池具有成本低廉、制作简单和环保等优点,吸引了国内外研究者的广泛关注。综述了半导体复合TiO2薄膜在DSSC中应用的研究进展,重点阐述了半导体复合TiO2薄膜的机理,总结了半导体复合TiO2薄膜的种类及制备方法,并分析了其对太阳能电池光电性能的影响。  相似文献   

11.
采用溶胶-凝胶法制备了TiO2薄膜、TiO2-ZnO纳米薄膜和Ag+/TiO2-ZnO纳米薄膜。通过X射线衍射和原子力显微镜表征了样品的晶相、晶粒尺寸和形貌。以水(H2O)作为极性溶液参照物、苯(C6H6)作为非极性溶液参照物,研究了掺杂量、煅烧温度、表面处理对薄膜光致双亲性的影响。结果表明:在ZnO/TiO2复合薄膜中,适量掺杂Ag+会提高其双亲性,摩尔比为1%时最佳。煅烧温度的不同能够导致薄膜的晶粒粒径、晶型及薄膜表面的粗糙度发生变化,从而影响薄膜的双亲性能。煅烧温度为550℃、经酸溶液或热处理后Ag+/TiO2-ZnO纳米薄膜的双亲性最佳,其晶粒粒径约为21.1nm。此时,亲水角和亲油角分别为2°和0.5°。Ag+/TiO2-ZnO纳米薄膜的双亲性明显高于纯TiO2和TiO2-ZnO纳米薄膜。  相似文献   

12.
We have successfully designed a rapid method for producing dye sensitized solar cells (DSSC) using TiO2 films prepared by a modified dielectric barrier discharge jet (m-DBD jet) method which uses a DBD jet with elevated substrate temperatures from room temperature (RT) to 500 degrees C for approximately 10 min. This facile process has several advantages over other methods such as (1) eliminating additional coating and annealing steps, (2) creating films with high speed electron mobility via hierarchical pore clusters, and (3) allowing controlled TiO2 bandgap by N doping using atmospheric nitrogen instead of supplying N2 gas. Depending on reaction conditions, the resulting nanostructured materials have various sizes and shapes, with those deposited at the highest substrate temperatures displaying hierarchical walnut-shaped morphology as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A possible growth mechanism of TiO2 nanoparticle clusters (TNC) is presented and discussed. Finally, this m-DBD jet method produces TNC films that exhibit approximately 4 times higher photo-conversion efficiency than the nanoparticle films by the unmodified DBD jet method.  相似文献   

13.
Recently anti-reflective films (AR) have been intensely studied. Particularly for textured silicon solar cells, the AR films can further reduce the reflection of the incident light through trapping the incident light into the cells. In this work, TiO2 anti-reflection films have been grown on the textured Si (100) substrate which is processed in two steps, and the films are deposited using metal-organic chemical vapor deposition (MOCVD) with a precursor of titanium tetra-isopropoxide (TTIP). The effect of the substrate texture and the growth conditions of TiO2 films on the reflectance has been investigated. Pyramid size of textured silicon had approximately 2-9 microm. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at 600 degrees C using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and 1000 degrees C, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about 75 +/- 5 nm. The reflectance at specific wavelength can be reduced to 3% in optimum layer.  相似文献   

14.
Anatase TiO2 nanocrystals with the high specific surface area were prepared by the hydrothermal treatment of anatase TiO2 sols at the temperature of 150 degrees C and above. When TiO2 sols with a lower content of TiO2 and at a relatively high pH value were hydrothermal treated, the dispersible and nanorod-like TiO2 nanocrystals were formed via the oriented attachment. The nanorod-like TiO2 nanocrystals with an aspect ratio of larger than 5 and a mean diameter of less than 7 nm were obtained in the absence of organic compounds. The as-prepared TiO2 nanocrystals were characterized with X-ray diffraction, transmission electron microscopy and BET surface area techniques. The TiO2 nanostructures were deposited on the FTO conductive glass as the anodic electrode for the dye-sensitized solar cells (DSSCs) and assembled into solar cells. The derived solar cells showed a conversion efficiency of 6.12% under 1 sun illumination of simulated sunlight and external quantum efficiency (EQE) of more than 60% at the wavelength of 550 nm. The DSSCs from the anatase nanorods has a higher open circuit voltage compared to the spherical nanocrystals.  相似文献   

15.
Dye-sensitized photoelectrochemical solar cells made from nanocrystalline films of TiO(2) doped with copper and sensitized with indoline 149 dye are found to have impressively higher efficiencies compared to equivalent cells made from undoped films. The surface concentration of copper atoms on the TiO(2) where this effect is optimized is nearly the same as the concentration of dye molecules on the TiO(2) surface. Copper doping shifts the flat-band potential of TiO(2) in the negative direction, which is favorable for increasing the open-circuit voltage of the cell. It is suggested that in addition to the linkage of the carboxylate ligand of the dye to the TiO(2) surface, moieties in the rhodanine rings of the dye coordinate to the copper atoms on the TiO(2) surface. The coordination of the dye to copper seems to have a positive influence on the efficiency of the cell.  相似文献   

16.
Nanostructure Sn(4+)-doped TiO(2) based mono and double layer thin films, contain 50% solid ratio of TiO(2) in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn(4+)-doped nano-TiO(2) particle a doping ratio of about 5[Sn(4+)/Ti(OBu(n))(4); mol/mol%] has been synthesized by hydrotermal process at 225 degrees C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO(2) particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property.  相似文献   

17.
为了寻求廉价、高效和稳定的光催化剂,用复合电沉积技术在紫铜片上制备了Sn/TiO2薄膜,经300℃热氧化使之形成SnO2/TiO2复合电极.利用SEM,XRD对薄膜进行了表征,以甲基橙为模型化合物,对复合电极的光催化和光电催化性能进行了测定.研究表明:该薄膜由0.3~1μm的颗粒构成,每个颗粒又由纳米晶粒形成;电极具有多孔结构,膜中的SnO2以两种不同的晶体结构存在;在薄膜质量相等的情况下,SnO2/TiO2薄膜的光催化活性是纯TiO2粒子膜的2.87倍;外加一定偏压下,其催化性能大幅度提高.  相似文献   

18.
The structural evolution of nanocrystalline TiO2 was studied by X-ray diffraction (XRD) and the Rietveld refinement method (RRM). TiO2 powders were prepared by the sol-gel technique. Post annealing of as-synthesized powders in the temperature range from 500 degrees C to 800 degrees C under air and argon atmospheres led to the formation of TiO2 nanoparticles with mean crystallite size in the range of 37-165 nm, based on the Rietveld refinement results. It was found that the phase structure, composition, and crystallite size of the resulting particles were dependent on not only the annealing temperature, but also the annealing atmosphere. Rietveld refinement of the XRD data showed that annealing the powders under argon atmosphere promoted the polymorphic phase transformation from anatase to rutile. Field emission scanning electron microscopy (FESEM) was employed to investigate the morphology and size of the annealed powders.  相似文献   

19.
SnO2/TiO2 composite films were fabricated on transparent electro-conductive glass substrates (F-doped SnO2-coated glass:FTO glass) via an electrophoretic deposition (EPD) method using Degussa P25 as raw materials, and were further characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM), UV-vis diffuse reflectance spectra and Photoluminescence spectra (PL). XRD and XPS results confirmed that the films were composed of TiO2 and SnO2. FESEM images indicated that the as-prepared TiO2 films had roughness surfaces, which consisted of nano-sized particles. The effects of calcination temperatures on the surface morphology, microstructures and photocatalytic activity of SnO2/TiO2 composite films were further investigated. All the prepared SnO2/TiO2 composite films exhibited high photocatalytic activities for photocatalytic decolorization of Rhodamine-B aqueous solution. At 400 degrees C, the SnO2/TiO2 composite films showed the highest photocatalytic activity due to synergetic effects of low sodium content, good crystallization, appropriate phase composition and slower recombination rate of photogenerated charge carriers.  相似文献   

20.
This article reports a study of the effects of synthesis parameters on the preparation and formation of mesoporous titania nanopowders by employing a two-step sol-gel method. These materials displayed crystalline domains characteristic of anatase. The first step of the process involved the hydrolysis of titanium isopropoxide in a basic aqueous solution mediated by neutral surfactant. The solid product obtained from step 1 was then treated in an acidified ethanol solution containing the same titanium precursor to thicken the pore walls. Low pH and higher loading of the Ti precursor in step 2 produced better mesoporosity and crystallinity of titanium dioxide polymorphs. The resultant powder exhibited a high surface area (73.8 m2/g) and large pore volume (0.17 cm3/g) with uniform mesopores. These materials are envisaged to be used as precursors for mesoporous titania films as a wide band gap semiconductor in dye-sensitized nanocrystalline TiO2 solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号