首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
高压输电线路不均匀覆冰是导致倒塔、断线等事故的重要原因。为此,以韶关地区110 kV输电线路为对象,提出了建立输电塔线体系的有限元模型进行力学特性研究的方法。首先对长档距侧重覆冰和短档距侧重覆冰2种不均匀状态,共模拟了24种仿真工况以探究杆塔对外界荷载的响应;继而分析发生不均匀覆冰时,杆塔两侧的导线张力以及轴向应力等变化;最后研究杆塔形变向重覆冰侧偏移、与导线连接处的横担点位移最大以及杆塔的薄弱部位增多诸情况的原因。仿真结果验证了该方法的有效性与实用性。  相似文献   

2.
为了深入研究微地形对覆冰线路不平衡张力及覆冰断线冲击的扩大效应,针对处于微地形区朝峰线输电线路覆冰断线事故,建立事故区4塔3档塔线体系有限元模型,定量计算不同工况下塔线体系临界覆冰厚度及断线冲击响应情况,提取不同覆冰工况及不同地形下数据对比分析。结果表明,该微地形下形成的重度覆冰和大高差档距扩大了塔线体系不平衡张力,覆冰断线造成的冲击动力响应远大于非微地形区覆冰断线情况,微地形区形成的重度覆冰及大档距高差扩大了断线冲击效应。  相似文献   

3.
基于简支梁理论与“等线长法”,研究了单档不均匀覆冰下导线不平衡张力及相对形变随档距、覆冰长度、覆冰厚度、档数、高差、串长及电压等级的变化规律。结果表明,导线的最大相对形变值并非出现在整档覆冰情况,而是随档内覆冰长度的增加,存在极大值,当覆冰厚度较大时更为明显。对比不同档距、冰厚下各电压等级线路脱冰跳跃过程中导地线静态、动态接近距离和地线单档非均匀覆冰下导地线静态接近距离,单档非均匀覆冰间隙将先达到闪络条件,在220 kV及以下线路中尤为明显,因此,该文研究能弥补现行规程规范的不足,指导单档不均匀覆冰下杆塔塔头和荷载的设计,以保障电力系统的安全运行。  相似文献   

4.
《广东电力》2021,34(9)
受山区地形影响,输电线路可能存在大高差、大档差等特殊工况。为了分析输电线路覆冰在线监测系统中,耐张塔输电线路等值覆冰厚度计算模型在一些特殊工况下的准确性,采用有限元法建立多档距输电线路仿真模型,研究大档差大高差、大档差无高差、非大档差大高差以及非大档差无高差等工况下的输电线路等值覆冰厚度计算结果的准确性。对于大档差工况,当输电线路前后档距电线覆冰不均匀程度较小时,计算结果与平均等值覆冰厚度的相对误差较小;反之,计算结果与平均等值覆冰厚度的相对误差较大(如当小档距侧输电线覆冰厚度为30 mm,大档距侧输电线覆冰厚度为10 mm,计算结果与平均等值覆冰厚度的相对误差大于40%);对于非大档差工况,计算结果与平均等值覆冰厚度的相对误差在30%以内,对于非大档差无高差输电线路,计算结果与平均等值覆冰厚度的相对误差在20%以内。结果表明,不均匀覆冰下,大档差与否对等值覆冰厚度计算结果的准确性有直接影响。  相似文献   

5.
冰区输电导线上的覆冰脱落会减小绝缘间隙,可能引发闪络跳闸,威胁线路安全运行。针对目前基于有限元法的非均匀覆冰下导线脱冰跳跃特性研究的不足,采用有限元方法建立3档四分裂导线计算模型,研究非均匀覆冰和均匀覆冰对导线脱冰跳跃特性的影响,分析非均匀覆冰导线在档距、高差、覆冰厚度等参数下对最大脱冰跳跃高度的影响规律,并对现有经验公式进行改进。结果表明,最大脱冰跳跃高度与非均匀覆冰密切相关,非均匀覆冰下导线的脱冰跳跃高度可能大于均匀覆冰下的脱冰跳跃高度,且最大脱冰跳跃高度所在位置可能不在档距中点,更容易引发闪络跳闸事故。因此,所提非均匀覆冰下导线的脱冰跳跃特性对重冰区线路绝缘设计具有重要工程价值。  相似文献   

6.
为更深入地研究输电线路塔线系统动态特性,完善各项参数对覆冰导线及杆塔的影响规律,采用模拟实际线路的3自由度多档距组合动态程序进行典型线路的仿真模拟计算。通过控制变量法,得出了档距组合对于塔线系统不平衡张力的影响规律,并探讨了现有的相间间隔棒的安装策略对于杆塔及相邻档导线的影响。仿真结果表明,发生风偏时,线路的不平衡张力随档距的增大而不断加大,且增大的幅度也不断上升;发生脱冰跳跃时,不平衡张力随档距的增大而增大,且脱冰档档距与非脱冰档档距对不平衡张力的影响不同;发生导线舞动时,杆塔两侧的不平衡张力随档距的增大而增大,但舞动档档距和未舞动档档距对不平衡张力的影响波形不同。同时发现,采取现有的相间间隔棒安装策略,相间间隔棒的安装对于相邻档的影响不大,能够有效减低导线舞动幅值,而且不会增加塔线系统的力学负担。  相似文献   

7.
输电线路覆冰失效分析   总被引:1,自引:0,他引:1  
刘纯  胡彬 《湖南电力》2008,28(1):6-8
在输电塔线体系的设计过程中,导线和铁塔结构是分开进行设计的.由于对铁塔的纵向不平衡张力缺乏有效的计算方法,通常是根据规程取导线最大使用张力的比例进行校核.然而,不平衡张力是危害输电线路安全稳定运行的重要因素之一,精确计算由档距、高差和不均匀荷载引起的纵向不平衡张力有着重要的意义.文中应用梁单元和索单元对输电铁塔和导线建立整体单元模型,对输电塔线体系结构覆冰荷载进行有限元计算,分析了均匀覆冰荷载下铁塔的极限承载力,对在实测不均匀覆冰荷载下的倒塔失效原因进行了分析,指出了输电线路中的薄弱点,对铁塔提出了提高冰厚等级改造的建议.  相似文献   

8.
以2008年初南方雪灾致输电塔倒塌为背景,用现有输电塔设计规程作为标准,建立了某输电线路的一塔两线体系精细化有限元模型.考虑输电塔构件尺寸、材料性能及输电塔本身所受荷载的随机性,采用蒙特卡罗有限元法(ANSYS/PDS)进行可靠度设计,分析计算了覆冰厚度4种工况下输电塔的可靠性.结果表明:随覆冰厚度的增加,输电塔的失效概率随之迅速增大;输电塔的强度失效概率远大于刚度失效概率,覆冰荷载是造成强度失效的主要原因,而风荷载是造成输电塔刚度失效的主要原因;如果参考建筑结构构件的目标可靠度指标,现有输电铁塔在目前设计覆冰条件下并不能满足要求.  相似文献   

9.
分别采用有限元分析方法与等线长法计算了典型耐张段的不平衡张力和悬垂串偏移量,这2种方法的计算结果基本一致。通过建立连续7档导线-绝缘子有限元模型,考虑多种线路设计参数的影响,分析了不同工况下重覆冰区特高压悬垂型杆塔的导线张力及不平衡张力。结果表明,覆冰加载模式、覆冰偏心和覆冰风速对不平衡张力影响不大,建议采用换算密度法模拟覆冰荷载并考虑10 m/s覆冰风速。不考虑档距差和高差时,随冰厚、档距和覆冰率的增加,导线不平衡张力百分数逐渐增加,计算得到的不同冰厚下特高压悬垂型杆塔不平衡张力百分数均小于规程规定值。随高差和档距差的增加,有高差和档距差的不平衡张力与无高差、无档距差的不平衡张力比值增大;随冰厚的增加,不平衡张力比值减小。30 mm及以下重覆冰区,不平衡张力百分数按照现行重覆冰区规程规定取值。40、50 mm重覆冰区,应将不平衡张力百分数分别提高至35%和41%。  相似文献   

10.
500 kV输电塔线覆冰有限元计算   总被引:21,自引:4,他引:21  
输电塔线体系中铁塔的纵向不平衡张力是危害输电线路安全稳定运行的重要因素之一。为有效计算由档距、高差和不均匀荷载引起的纵向不平衡张力,应用梁单元和索单元建立了输电铁塔和导线整体单元模型。对输电塔线体系结构覆冰荷载进行有限元计算后得到了铁塔的不平衡张力,分析了铁塔的最大压应力随覆冰厚度的变化,指出了档距差和高差角过大是产生不平衡张力的主要原因,而不平衡张力致使铁塔失稳。复沙Ⅰ线500 kV输电线路的实例计算表明该方法非常有效。  相似文献   

11.
随着储能技术的飞速发展,大规模储能系统已经成为保证电力系统可靠供电的一个重要手段。介绍了储能技术的类别及其在电力系统中的作用,并阐述了其在电力系统中的应用研究现状和目前的主要示范应用实例,论述了储能技术未来发展趋势。  相似文献   

12.
电站锅炉停用保护剂多采用十八胺和表面活性胺。对这2种停用保护剂进行了应用效果对比研究,即对湿冷机组、空冷机组采用十八胺或表面活性胺、有无凝结水精处理系统等6台机组停机和启动过程中给水、主蒸汽和凝结水的氢电导率变化情况进行分析。研究结果表明:在停机过程和启动过程,2种保护剂均会在水汽系统中发生部分分解,导致水汽系统的氢电导率显著升高;表面活性胺和十八胺比较,使用前者,机组启停机过程可保持凝结水精处理系统正常投运,因而可使水汽质量迅速达标,对机组安全运行有利,因此推荐采用表面活性胺作为锅炉停用保护剂。  相似文献   

13.
14.
特高压线路工频参数测试干扰分析是选择适合工频参数测试方法及测试结果分析的重要基础。测试了1 000 kV皖南-浙北特高压线路正序和零序参数测试期间的干扰电压信号,分析了其频谱特征;在此基础上,通过与正序参数仿真计算值的对比分析了正序参数实际测试偏差。结果表明:皖南-浙北特高压同塔双回线路工频参数测试期间,干扰电压存在“三相不平衡性及时变性”的特点;工频法和异频法2种不同方法得到的线路参数测试结果存在一定差异;干扰电压“时变”时,线路工频参数测试宜采用异频法。  相似文献   

15.
针对滞环电流控制存在的开关频率不固定,设计输出滤波器困难的缺点,通过对开关频率与滞环环宽关系的分析,提出了一种根据电流变化率调节环宽的准恒频滞环电流控制方法。控制方法根据电流变化率来实时调节滞环控制的环宽,实现开关频率的恒定;具有响应速度快和稳定性好的优点,同时克服了滞环电流控制开关频率不固定的缺点;较已有方法计算量小,不依赖于系统参数,容易实现,并通过理论推导和仿真证实了方法的可行性和正确性。  相似文献   

16.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world’s premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

17.
Cuba’s electric sector is approaching an inflection point. Although the country has historically relied upon non-commercial barter agreements for imported oil to meet its electric demand, a combination of factors including reducing imports, increasing demand, and ambitious climate change goals suggest new pathways forward may be warranted. The way Cuba responds to near- and long-term challenges will help set the stage for its energy future. This article describes Cuba's electric sector and provides a set of key recommendations to consider going forward.  相似文献   

18.
王海波  狄谦 《中国电力》2015,48(1):104-106
介绍了550 kV SF6气体绝缘金属封闭式组合电器(GIS)高海拔套管的绝缘屏蔽结构参数对电场分布的影响。针对套管单屏蔽结构方案,通过有限元法研究了接地屏蔽层翻边结构参数组合对套管内部最大电场强度的影响;研究了接地屏蔽层高度对GIS套管内外绝缘电场强度分布的影响。从而通过最优化接地屏蔽层高度和接地屏蔽层翻边结构参数组合,得到合理的套管内外电场分布,有效解决了高海拔型套管外绝缘修正后的内外电场分布均匀化问题,为550 kV SF6气体绝缘高海拔套管的绝缘结构设计提供了理论依据。  相似文献   

19.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

20.
As coal is the most important primary energy in China, SO2 , the main pollutant of coal-fired power plantsseriously pollutes the environment in the course of energy utilization and conversion. Flue gas desulphurization is inevitable in China, however, it is rather difficult to reach the stipulated standards without any compulsory administrative measures of the government. What are the exact difficulties and solutions for the desulphurization in power plants?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号