首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

2.
In this article, the second part of a two-part study, we report on the mechanical behavior of Ti3SiC2. In particular, we have evaluated the mechanical response of fine-grained (3–5 μm) Ti3SiC2 in simple compression and flexure tests, and we have compared the results with those of coarse-grained (100–200 μm) Ti3SiC2. These tests have been conducted in the 25°–1300°C temperature range. At ambient temperature, the fine- and coarse-grained microstructures exhibit excellent damage-tolerant properties. In both cases, failure is brittle up to ∼1200°C. At 1300°C, both microstructures exhibit plastic deformation (>20%) in flexure and compression. The fine-grained material exhibits higher strength compared with the coarse-grained material at all temperatures. Although the coarse-grained material is not susceptible to thermal shock (up to 1400°C), the fine-grained material thermally shocks gradually between 750° and 1000°C. The results presented herein provide evidence for two important aspects of the mechanical behavior of Ti3SiC2: (i) inelastic deformation entails basal slip and damage formation in the form of voids, grain-boundary cracks, kinking, and delamination of individual grains, and (ii) the initiation of damage does not result in catastrophic failure, because Ti3SiC2 can confine the spatial extent of the damage.  相似文献   

3.
The cyclic fatigue and fracture toughness behavior of reactive hot-pressed Ti3SiC2 ceramics was examined at temperatures from ambient to 1200°C with the objective of characterizing the high-temperature mechanisms controlling crack growth. Comparisons were made of two monolithic Ti3SiC2 materials with fine- (3–10 μm) and coarse-grained (70–300 μm) microstructures. Results indicate that fracture toughness values, derived from rising resistance-curve behavior, were significantly higher in the coarser-grained microstructure at both low and high temperatures; comparative behavior was seen under cyclic fatigue loading. In each microstructure, Δ K th fatigue thresholds were found to be essentially unchanged between 25° and 1100°C; however, there was a sharp decrease in Δ K th at 1200°C (above the plastic-to-brittle transition temperature), where significant high-temperature deformation and damage are first apparent. The substantially higher cyclic-crack growth resistance of the coarse-grained Ti3SiC2 microstructure was associated with extensive crack bridging behind the crack tip and a consequent tortuous crack path. The crack-tip shielding was found to result from both the bridging of entire grains and from deformation kinking and bridging of microlamellae within grains, the latter forming by delamination along the basal planes.  相似文献   

4.
The effect of vacuum annealing on the thermal stability and phase transition of Ti3SiC2 has been investigated by X-ray diffraction (XRD), neutron diffraction, synchrotron radiation diffraction, and secondary ion mass spectroscopy (SIMS). In the presence of vacuum or a controlled atmosphere of low oxygen partial pressure, Ti3SiC2 undergoes a surface dissociation to form nonstoichiometric TiC and/or Ti5Si3C x that commences at ∼1200°C and becomes very pronounced at ≥1500°C. Composition depth profiling at the near surface of vacuum-annealed Ti3SiC2 by XRD and SIMS revealed a distinct gradation in the phase distribution of TiC and Ti5Si3C x with depth.  相似文献   

5.
Composites in the SiC–TiC–Ti3SiC2 system were synthesized using reactive hot pressing at 1600°C. The results indicate that addition of Ti3SiC2 to SiC leads to improved fracture toughness. In addition, high microhardness can be retained if TiC is added to the material. The best combination of properties obtained in this study is K I c =8.3 MPa·m1/2 and H v=17.6 GPa. The composition can be tailored in situ using the decomposition of Ti3SiC2. Ti3SiC2 decomposed rapidly at temperatures above 1800°C, but the decomposition could be conducted in a controlled manner at 1750°C. This can be used for synthesis of fully dense composites with improved properties by first consolidating to full density a softer Ti3SiC2-rich initial composition, and then using controlled decomposition of Ti3SiC2 to achieve the desired combination of microhardness and fracture toughness.  相似文献   

6.
The reactive sintering of 3Ti/SiC/C to form the layered ternary carbide Ti3SiC2 was studied in situ by time-resolved neutron powder diffraction. A number of intermediate processes occur during the synthesis beginning with the α-β transition in Ti. Concurrent with the α-β transition, two intermediate phases, TiC x and Ti5Si3C x ( x ≤ 1), form. These phases account for almost the entire sample in the range 1500–1600°C beyond which they react with each other and a small amount of free C to form the product phase Ti3SiC2.  相似文献   

7.
Ti3SiC2/HAp composites with different Ti3SiC2 volume fractions were fabricated by spark plasma sintering (SPS) at 1200°C. The effects of Ti3SiC2 addition on the mechanical properties and microstructures of the composites were investigated. The bending strength and fracture toughness of the composites increased with increasing of Ti3SiC2 content, whereas the Vickers hardness decreased. The bending strength and fracture toughness reached 252±10 MPa and 3.9±0.1 MPa·m1/2, respectively, with the addition of 50 vol% Ti3SiC2. The increases in the mechanical properties were attributed to the matrix strengthening and interactions between cracks and the Ti3SiC2 platelets.  相似文献   

8.
Titanium silicon carbide (Ti3SiC2) and Ti3SiC2-based composite powders were synthesized by isothermal treatment in an inert atmosphere as a function of initial compositions (mixtures). A high content of TiC was obtained in the final product when the initial mixtures contained free carbon. The use of TiC as a reagent was unsuccessful in obtaining Ti3SiC2. High Ti3SiC2 conversion was found for the initial mixtures containing SiC as the main source for silicon and carbon. An initial mixture with a large excess of silicon, 3Ti/1.5SiC/0.5C, was needed to obtain high-purity Ti3SiC2. A reaction mechanism, where Ti3SiC2 nucleates on Ti5Si3C crystals and grows by long-range diffusion of Ti and C, is proposed. The reaction mechanism was proposed to be based on silicon loss during the formation of Ti3SiC2.  相似文献   

9.
It is demonstrated that the M n +1AX n phase Ti3AlC2 may be readily synthesized by sintering a stoichiometric mixture of the lower order MAX phase Ti2AlC mixed with a stoichiometric amount of TiC in the temperature range 1350°–1450 °C. High-quality Ti3AlC2 was readily produced using sintering times in the range 2–5 h. In general, <2% of unwanted or remnant phases were found to be present and in some samples none could be detected at all.  相似文献   

10.
In this work, we report on the interdiffusion of Ge and Si in Ti3SiC2 and Ti3GeC2, as well as that of Nb and Ti in Ti2AlC and Nb2AlC. The interdiffusion coefficient, D int, measured by analyzing the diffusion profiles of Si and Ge obtained when Ti3SiC2–Ti3GeC2 diffusion couples are annealed in the 1473–1773 K temperature range at the Matano interface composition (≈Ti3Ge0.5Si0.5C2), was found to be given by
D int increased with increasing Ge composition. At the highest temperatures, diffusion was halted after a short time, apparently by the formation of a diffusion barrier of TiC. Similarly, the interdiffusion of Ti and Nb in Ti2AlC–Nb2AlC couples was measured in the 1723–1873 K temperature range. The D int for the Matano interface composition, viz. ≈(Ti0.5,Nb0.5)2AlC, was found to be given by
At 1773 K, the diffusivity of the transition metal atoms was ≈7 times smaller than those of the Si and Ge atoms, suggesting that the former are better bound in the structure than the latter.  相似文献   

11.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

12.
In this study we used solid-state synthesis to determine the phase relations in the pyrochlore-rich part of the Bi2O3−TiO2−Nd2O3 system at 1100°C. The samples were analyzed using X-ray powder diffraction and scanning electron microscopy with energy- and wavelength-dispersive spectroscopy. A single-phase pyrochlore ceramic was obtained with the addition of 4.5 mol% of Nd2O3. We determined the solubility limits for the three solid solutions: (i) the pyrochlore solid solution Bi(1.6–1.08 x )Nd x Ti2O(6.4+0.3 x ), where 0.25< x <0.96; (ii) the solid solution Bi4− x Nd x Ti3O12, where 0< x <2.6; and (iii) the Nd2− x Bi x Ti2O7 solid solution, where 0< x <0.35. The determined phase relations in the pyrochlore-rich part are presented in a partial phase diagram of the Bi2O3−TiO2−Nd2O3 system in air at 1100°C.  相似文献   

13.
Formation of titanium silicon carbide (Ti3SiC2) by mechanical alloying (MA) of Ti, Si, and C powders at room temperature was experimentally investigated. A large amount of granules less than 5 mm in size, consisting of Ti3SiC2, smaller TiC particles, and other silicides, have been obtained after ball milling for only 1.5 h. The effect of excess Si in the starting powders on the formation of Ti3SiC2 was studied. The formation mechanism of Ti3SiC2 was analyzed. It is believed that a mechanically induced self-propagating reaction is ignited during the MA process. A possible reaction mechanism was proposed to explain the formation of the final products.  相似文献   

14.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

15.
Ti3SiC2 has many salient properties including low density, high strength and modulus, damage tolerance at room temperature, good machinablity, and being resistant to thermal shock and oxidation below 1100°C. However, the low hardness and poor oxidation resistance above 1100°C limit the application of this material. The poor oxidation resistance at temperatures above 1100°C was because of the absence of protective layer in the scale and the presence of TiC impurity phase. TiC impurity could be eliminated by adding a small amount of Al to form Ti3Si(Al)C2 solid solutions. Although the high-temperature oxidation resistance was significantly improved for the Ti3Si(Al)C2 solid solutions, the strength at high temperatures was lost. One important way to enhance the high-temperature strength is to incorporate hard ceramic particles like SiC. In this article, we describe the in situ synthesis and simultaneous densification of Ti3Si(Al)C2/SiC composites using Ti, Si, Al, and graphite powders as the initial materials. The effect of SiC content on high-temperature mechanical properties and oxidation resistance were investigated. The mechanisms for the improved high-temperature properties are discussed.  相似文献   

16.
Mechanical alloying (MA) has been used to synthesize Ti3SiC2 powder from the elemental Ti, Si, and C powders. The MA formation conditions of Ti3SiC2 were strongly affected by the ball size for the conditions used. MA using large balls (20.6 mm in diameter) enhanced the formation of Ti3SiC2, probably via an MA-triggered combustion reaction, but the Ti3SiC2 phase was not synthesized only by the MA process using small balls (12.7 mm in diameter). Fine powders containing 95.8 vol% Ti3SiC2 can be obtained by annealing the mechanically alloyed powder at relatively low temperatures.  相似文献   

17.
Porous Cr3C2 grains (∼300 to 500 μm) with ∼10 wt% of Cr2O3 were prepared by heating a mixture of MgCr2O4 grains and graphite powder at 1450° to 1650°C for 2 h in an Al2O3 crucible covered by an Al2O3 lid with a hole in the center. The porous Cr3C2 grains exhibited a three-dimensional network skeleton structure. The mean open pore diameter and the specific surface area of the porous grains formed at 1600°C for 2 h were ∼3.5 (μm and ∼6.7 m2/g, respectively. The present work investigated the morphology and the formation conditions of the porous Cr3C2 grains, and this paper will discuss the formation mechanism of those grains in terms of chemical thermodynamics.  相似文献   

18.
Isothermal oxidation of dense TiC ceramics, fabricated by hot-isostatic pressing at 1630°C and 195 MPa, was performed in Ar/O2 (dry oxidation), Ar/O2/H2O (wet oxidation), and Ar/H2O (H2O oxidation) at 900°–1200°C. The weight change measurements of the TiC specimen showed that the dry, wet, and H2O oxidation at 850°–1000°C is represented by a one-dimensional parabolic rate equation, while the oxidation in the three atmospheres at 1100° and 1200°C proceeds linearly. Cross-sectional observation showed that the dry oxidation produces a lamellar TiO2 scale consisting of many thin layers, about 5 μm thick, containing many pores and large cracks, while H2O-containing oxidation decreases pores in number and diminishes cracks in scales. Gas evolution of CO2 and H2 with weight change measurement was simultaneously followed by heating the TiC to 1400°C in the three atmospheres. Cracking in the TiO2 scale accompanied CO2 evolution, and the H2O-containing oxidation produced a small amount of H2. A piece of single crystal TiC was oxidized in 16O2/H218O to reveal the contribution of O from H2O to the oxidation of TiC by secondary ion mass spectrometry.  相似文献   

19.
The conditions necessary for synthesizing Al4SiC4 from mixtures of aluminum, silicon, and carbon and kaolin, aluminum, and carbon, as starting materials, were examined in the present study. The standard Gibbs energy of formation for the thermodynamic reaction SiC( s ) + Al4C3( s ) = Al4SiC4( s ) changed from positive to negative at 1106°C. SiC and Al4C3 formed as intermediate products when the mixture of aluminum, silicon, and carbon was heated in argon gas, and Al4SiC4 then formed by reaction of the SiC and Al4C3 at >1200°C. Al4C3, SiO2, Al2O3, SiC, and Al4O4C formed as intermediate products when the mixture of kaolin, aluminum, and carbon was heated under vacuum, and Al4SiC4 formed from a reaction of those intermediate products at >1600°C.  相似文献   

20.
The 1100°C isothermal section and the isopleths at 5, 10, and 15 at.% C in the Ti–Si–C system were determined by DTA and XRD methods. Five invariant reactions (L (liquid) = Si + SiC + TiSi2 at 1330°C, L = TiSi + TiSi2+ Ti5Si3C x at 1485°C, L + Ti5Si3C x = Ti3SiC2+ TiSi2 at 1485°C, L + Ti3SiC2= TiSi2+ SiC at 1473°C, and L + TiC = bcc-(Ti) + Ti5Si3C x at 1341°C) were observed. The transition temperature for L + TiC = Ti3SiC2+ SiC was measured by the Pirani technique. Optimized thermodynamic parameters for the Ti–Si–C system were then obtained by means of the CALPHAD (calculation of phase diagrams) method applied to the present experimental results and reliable literature data. The calculations satisfactorily account for most of the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号