首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper proposes an adaptive model predictive control (MPC) algorithm for a class of constrained linear systems, which estimates system parameters on-line and produces the control input satisfying input/state constraints for possible parameter estimation errors. The key idea is to combine the robust MPC method based on the comparison model with an adaptive parameter estimation method suitable for MPC. To this end, first, a new parameter update method based on the moving horizon estimation is proposed, which allows to predict an estimation error bound over the prediction horizon. Second, an adaptive MPC algorithm is developed by combining the on-line parameter estimation with an MPC method based on the comparison model, suitably modified to cope with the time-varying case. This method guarantees feasibility and stability of the closed-loop system in the presence of state/input constraints. A numerical example is given to demonstrate its effectiveness.  相似文献   

2.
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.  相似文献   

3.
In this work, we develop an economic model predictive control scheme for a class of nonlinear systems with bounded process and measurement noise. In order to achieve fast convergence of the state estimates to the actual system state as well as the robustness of the observer to measurement and process noise, a deterministic (high-gain) observer is first applied for a small time period with continuous output measurements to drive the estimation error to a small value; after this initial small time period, a robust moving horizon estimation scheme is used on-line to provide more accurate and smoother state estimates. In the design of the robust moving horizon estimation scheme, the deterministic observer is used to calculate reference estimates and confidence regions that contain the actual system state. Within the confidence regions, the moving horizon estimation scheme is allowed to optimize its estimates. The output feedback economic model predictive controller is designed via Lyapunov techniques based on state estimates provided by the deterministic observer and the moving horizon estimation scheme. The stability of the closed-loop system is analyzed rigorously and conditions that ensure the closed-loop stability are derived. Extensive simulations based on a chemical process example illustrate the effectiveness of the proposed approach.  相似文献   

4.
Mixture model based clustering (also simply called model-based clustering hereinafter) consists of fitting a mixture model to data and identifying each cluster with one of its components. This paper tackles the model selection and parameter estimation problems in model-based clustering so as to improve the clustering performance on the data sets whose true kernel distribution functions are not in the family of assumed ones, as well as with inherently overlapped clusters. Being tailored to clustering applications, an effective model selection criterion is first proposed. Unlike most criteria that measure the goodness-of-fit of the model only to generate data, the proposed one also evaluates whether the candidate model provides a reasonable partition for the observed data, which enforces a model with well-separated components. Accordingly, an improved method for the estimation of mixture parameters is derived, which aims to suppress the spurious estimates by the standard expectation maximization (EM) algorithm and enforce well-supported components in the mixture model. Finally, the estimation of mixture parameters and the model selection is integrated in a single algorithm which favors a compact mixture model with both the well-supported and well-separated components. Extensive experiments on synthetic and real-world data sets are carried out to show the effectiveness of the proposed approach to the mixture model based clustering.  相似文献   

5.
The identification of a class of ill-conditioned processes is considered. The goal of identification is model predictive control (MPC). For this class of processes, it is essential to have good estimation of the very small difference between certain transfer functions, or, low gain direction. Two simple and practical test methods will be proposed that can enhance the model quality of low gain direction. The main idea is to use the high amplitude and high correlation test signals that excite the low gain direction more and that will not disturb process operation. The test signals can be used in both open-loop and closed-loop tests. A high purity distillation column model is used to show the effectiveness of the methods.  相似文献   

6.
A piecewise linear system consists of a set of linear time‐invariant (LTI) subsystems, with a switching sequence specifying an active subsystem at each time instant. This paper studies the adaptive control problem of single‐input, single‐output (SISO) piecewise linear systems. By employing the knowledge of the time instant indicator functions of system parameter switches, a new controller structure parametrization is proposed for the development of a stable adaptive control scheme with reduced modeling error in the estimation error signal used for parameter adaptive laws. This key feature is achieved by the new control scheme's ability to avoid a major parameter swapping term in the error model, with the help of indicator functions whose knowledge is available in many applications. A direct state feedback model reference adaptive control (MRAC) scheme is presented for such systems to achieve closed‐loop signal boundedness and small output tracking error in the mean square sense, under the usual slow system parameter switching condition. Simulation results on linearized NASA GTM models are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

7.
This contribution deals with the design of an observer for state estimation of a batch crystallizer, which is described by a detailed population balance model. Therefore, the rigorous model containing (partial) integro-differential equations is first reduced by applying an integral approximation technique to a model of moments that consists of only a few ordinary differential equations. This reduced model then serves as the basis for the design of a Luenberger type observer. The performance of the observer is finally demonstrated in various disturbance scenarios, using the rigorous population balance model for the simulation of the crystallizer plant.  相似文献   

8.
This paper presents a new methodology to integrate process design and control. The key idea in this method is to represent the system’s closed-loop nonlinear behaviour as a linear state space model complemented with uncertain model parameters. Then, robust control tools are applied to calculate bounds on the process stability, the process feasibility and the worst-case scenario. The new methodology was applied to the simultaneous design and control of a mixing tank process. The resulting design avoids the solution of computationally intensive dynamic optimizations since the integration of design and control problem is reduced to a nonlinear constrained optimization problem.  相似文献   

9.
The linear model predictive control which is frequently used for building climate control benefits from the fact that the resulting optimization task is convex (thus easily and quickly solvable). On the other hand, the nonlinear model predictive control enables the use of a more detailed nonlinear model and it takes advantage of the fact that it addresses the optimization task more directly, however, it requires a more computationally complex algorithm for solving the non-convex optimization problem. In this paper, the gap between the linear and the nonlinear one is bridged by introducing a predictive controller with linear time-dependent model. Making use of linear time-dependent model of the building, the newly proposed controller obtains predictions which are closer to reality than those of linear time invariant model, however, the computational complexity is still kept low since the optimization task remains convex. The concept of linear time-dependent predictive controller is verified on a set of numerical experiments performed using a high fidelity model created in a building simulation environment and compared to the previously mentioned alternatives. Furthermore, the model for the nonlinear variant is identified using an adaptation of the existing model predictive control relevant identification method and the optimization algorithm for the nonlinear predictive controller is adapted such that it can handle also restrictions on discrete-valued nature of the manipulated variables. The presented comparisons show that the current adaptations lead to more efficient building climate control.  相似文献   

10.
The authors design a new speed sensorless output feedback control for the full-order model of induction motors with unknown constant load torque, which guarantees local asymptotic tracking of smooth speed and rotor flux modulus reference signals and local asymptotic field orientation, on the basis of stator current measurements only. The proposed nonlinear controller exploits the concept of indirect field orientation (no flux estimation is required) in combination with a new high-gain speed estimator based on the torque current tracking error. The estimates of unknown load torque and time-varying rotor speed converge to the corresponding true values under a persistency of excitation condition with a physically meaningful interpretation, basically equivalent to non-null synchronous frequency. Stability analysis of the overall dynamics has been performed exploiting the singular perturbation method. The proposed control algorithm is a “true” industrial sensorless solution since no simplifying assumptions (flux and load torque measurements) are required. Simulation and experimental tests show that the proposed controller is suitable for medium and high performance applications.  相似文献   

11.
This paper considers the dynamic output feedback robust model predictive control (MPC) for a system with both polytopic model parametric uncertainty and bounded disturbance. For this topic, the techniques for handling the unknown true state are crucial, and the strict guarantee of the input/output/state constraints requires replacing the true state by its bounds in the optimisation problems. Previously, in the separate works, we (i) gave the general polyhedral bound; (ii) proposed the general ellipsoidal bound; (iii) applied some special polyhedral bounds to tighten the ellipsoidal bound since the latter is crucial for guaranteeing recursive feasibility. In this paper, (i)–(iii) are unified, and the up-to-date least conservative treatment of the true state bound is given, so the control performance can be greatly improved. The contribution mainly lies in overcoming the difficulties in developing technical details for the unification. A numerical example is given to illustrate the effectiveness of the new method.  相似文献   

12.
连续回滞系统的模型参考自适应控制   总被引:1,自引:0,他引:1  
冯颖  胡跃明  苏春翌 《控制与决策》2006,21(12):1402-1406
采用Stop和Play算子表示的Prandtl-Ishlinskii回滞模型描述回滞特性,该模型便于实现控制器的设计.考虑带有未知回滞驱动且以状态空间形式表示的连续时间线性动态系统,给出了模型参考白适应控制设计方案.控制策略保证闭环系统的全局稳定性和期望的跟踪精度,有效地抑制回滞产生的不精确和振荡现象.数值仿真结果表明了控制算法的有效性.  相似文献   

13.
This article describes the design of a linearizing, observer‐based, robust dynamic feedback control scheme for output reference trajectory tracking tasks in a leader‐follower non‐holonomic car formation problem. The approach is based on the cars' kinematic models. A radical simplification in the form of a global ultra‐model is proposed on the follower's exact open loop position tracking error dynamics obtained via flatness considerations. This results in a system described by an additively disturbed set of two, second order integrators with non‐linear velocity dependent control input gain matrix. The unknown additive disturbances are modeled as absolutely uniformly bounded time signals which may be locally approximated by arbitrary elements of a sufficiently high degree family of Taylor polynomials. Linear high‐gain Luenberger observers of the generalized proportional integral (GPI) type may be readily designed. These observers include the self updating internal model of the unknown disturbance input vector components in the form of generic, instantaneous, time‐polynomial models. The proposed (GPI) observers, which are the dual counterpart of GPI controllers [17], achieve a simultaneous disturbance estimation and tracking error phase variables estimation. This on‐line gathered information is used to advantage on the follower's feedback controller thus allowing for a simple, yet efficient, disturbance and control input gain cancelation effort. The results are applied to have the follower track a time‐delayed version of the actual leader's trajectory. Experimental results are presented which illustrate the robustness and viability of the proposed approach.  相似文献   

14.
In many applications,the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them.This decomposition is motivated by the ease and flexibility of the controller design for each subsystem.In this paper,a decentralized model reference adaptive iterative learning control scheme is developed for interconnected systems with model uncertainties.The interconnections in the dynamic equations of each subsystem are considered with unknown boundaries.The proposed controller of each subsystem depends only on local state variables without any information exchange with other subsystems.The adaptive parameters are updated along iteration axis to compensate the interconnections among subsystems.It is shown that by using the proposed decentralized controller,the states of the subsystems can track the desired reference model states iteratively.Simulation results demonstrate that,utilizing the proposed adaptive controller,the tracking error for each subsystem converges along the iteration axis.  相似文献   

15.
A new approach to model‐set identification is proposed based on an agnostic learning theory. The squared prediction error is estimated together with its uncertainty uniformly in some parameter region. Based on this estimation, a model set is constructed so as to include the best model. The proposed approach does not require assumptions on the true dynamics or the noise, neither does it need infinite number of input‐output data in order to justify its result. But it guarantees that the size of the identified model set converges to zero as the number of input‐output data increases. Improvement of the precision is considered on the proposed identification method. Generalization of the approach is discussed and a numerical example is presented.  相似文献   

16.
Repetitive model predictive control (RMPC) incorporates the idea of repetitive control (RC) into the basic formulation of model predictive control (MPC) to enable the user to take full advantage of the constraint handling, multivariable control features of MPC in controlling a periodic process. The RMPC achieves perfect asymptotic setpoint tracking/disturbance rejection in periodic processes, provided that the period length used in the control formulation matches the actual period of the reference/disturbance signal exactly. Even a small mismatch between the actual period of the process and the controller period can deteriorate the RMPCs performance significantly. The period mismatch can occur either from an inaccurate estimation of the actual frequency of disturbance due to resolution limit or from trying to force the controller period to be an integer multiple of the sampling time. For such cases, an extension of RMPC called “period-robust” repetitive model predictive control (pr-RMPC) is proposed. It is based on the idea of using weighted, multiple memory loops in RC, such that small changes in period length do not diminish the tracking/rejection properties by much. Simulation results show that, in case of a slight period mismatch, pr-RMPC achieves significant improvement over the standard RMPC in rejecting periodic disturbances.  相似文献   

17.
A nonlinear model reference adaptive controller based on hyperstability approach, is presented for the control of robot manipulators. Use of hyperstability approach simplifies the stability proof of the adaptive system. The unknown parameters of the system, as well as its variable payload, are estimated on line and are adaptive to their actual values; tending to reduce the system error. In addition, any sudden change in the system parameters or payload is detected by the proposed intelligent controller. Robot path tracking, with unknown parameter values and variable payload, is simulated to show the effectiveness of the proposed adaptive control algorithm. Both system output error and parameter estimation error vanish under the proposed parameter adaptation algorithm.  相似文献   

18.
In this work, the realization of an online optimizing control scheme for an industrial semi-batch polymerization reactor is discussed in detail. The goal of the work is the automatic minimization of the duration of the batch without violating the tight constraints for the product specification which translate into stringent temperature control requirements for a highly exothermic reaction. Crucial factors for a successful industrial implementation of the control scheme are the development and the validation of a process model that is suitable for process optimization purposes and the estimation of unmeasured process states and the online compensation of model uncertainties. Two implementations are proposed, a direct online optimizing control scheme and a simplified scheme that combines a model-predictive temperature controller and a monomer feed controller that steers the cooling power to a predefined value in a cascaded fashion. We show by simulation results with a validated process model that both schemes achieve the goals of tight temperature control and reduction of the batch time. The performance of the NMPC controller is superior, on the other hand the cascaded scheme could be directly implemented into the DCS of the plant and is in daily operation while the online optimizing scheme requires an additional computer and is currently in the test phase.  相似文献   

19.
20.
Distributed model predictive control of an experimental four-tank system   总被引:1,自引:0,他引:1  
A distributed model predictive control (DMPC) framework is proposed. The physical plant structure and the plant mathematical model are used to partition the system into self-sufficient estimation and control nodes. Local measurements at the nodes are used to estimate the relevant plant states. This information is then used in the model predictive control calculations. Communication among relevant nodes during estimation and control calculations provides improvement over the performance of completely decentralized controllers. The DMPC framework is demonstrated for the level control of an experimental four-tank system. The performance of the DMPC system for disturbance rejection is compared with other control configurations. The results indicate that the proposed framework provides significant improvement over completely decentralized MPC controllers, and approaches the performance of a fully centralized design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号