首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Turkey is an energy importing nation with more than half of our energy requirements met by imported fuels. Air pollution is becoming a significant environmental concern in the country. In this regard, geothermal energy and other renewable energy sources are becoming attractive solution for clean and sustainable energy future for Turkey. Turkey is the seventh richest country in the world in geothermal energy potential. The main uses of geothermal energy are space heating and domestic hot water supply, greenhouse heating, industrial processes, heat pumps and electricity generation. The district heating system applications started with large-scale, city-based geothermal district heating systems in Turkey, whereas the geothermal district heating centre and distribution networks have been designed according to the geothermal district heating system (GDHS) parameters. This constitutes an important advantage of GDHS investments in the country in terms of the technical and economical aspects. In Turkey, approximately 61,000 residences are currently heated by geothermal fluids. A total of 665 MWt is utilized for space heating of residential, public and private property, and 565,000 m2 of greenhouses. The proven geothermal heat capacity, according to data from existing geothermal wells and natural discharges, is 3132 MWt. Present applications have shown that geothermal energy is clean and much cheaper compared to the other fossil and renewable energy sources for Turkey.  相似文献   

2.
Renewable energy is accepted as a key source for the future, not only for Turkey but also for the world. Turkey has a considerably high level of renewable energy sources that can be a part of the total energy network in the country. Turkey is located in the Mediterranean sector of Alpine–Himalayan Tectonic Belt and has a place among the first seven countries in the world in the abundance of geothermal resources. The share of its potential used is, however, only about 2–3%.The main objective of the present study is to review the development of geothermal energy (GE) utilization in Turkey, giving its historical development and opportunities. GE is used for electric power generation and direct utilization in Turkey, which is among the first five countries in the world in geothermal direct use applications. Direct use of geothermal resources has expanded rapidly last 36 years from space heating of single buildings to district heating, greenhouse heating, industrial usage, modern balneology and physical treatment facilities.Turkey presently has one operating geothermal power plant, located near Denizli City in Western Anatolia with an installed capacity of 20.4 MWe and an electrical energy production of 89,597 MW h in 2001. Recently, the total installed capacity has reached 820 MWt for direct use. The total area of geothermal heated greenhouses exceeded over 35 ha with a total heating capacity of 81 MWt. Ground-source (or geothermal) heat pumps (GSHPs) have also been put on the Turkish market since 1998. Though there are no Turkish GSHP manufactures as yet, 207 units have been installed in the country to date, representing a total capacity of 3 MW.GE is a relatively benign energy source, displaying fossil fuels and thus reducing greenhouse gas emissions. So, it is expected that GE development will significantly speed up in the country if the geothermal law becomes effective.  相似文献   

3.
Geothermal energy, a relatively benign energy source when compared with other energy sources due to reduction in greenhouse gas emissions, is used for electricity generation and direct utilization. Turkey has a place among the first seven countries in the world in the abundance of geothermal resources, but it has only used about 4% of its potential. The paper presents the status of energy needs and renewables, potential, utilization and the importance of geothermal energy in Turkey. It also gives a comparison between geothermal energy and other energy sources regarding environmental issues. It is estimated that if the geothermal heating potential alone in Turkey is used, 5 million residences will be heated and as a result, releases of 48 million ton/year CO2 emissions into the atmosphere will be prevented. In addition to this, if the other geothermal potential (i.e. electricity) is used it will provide considerable environmental benefits. Therefore, it is expected that geothermal energy development will significantly speed up in the future.  相似文献   

4.
Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4 MWe already operating in the Denizli–Kizildere geothermal field and another is under the construction in the Aydin–Germencik field.This study examines the potential and utilization of the existing geothermal energy resources in Kutahya–Simav region. The temperature of the geothermal fluid in the Simav–Eynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the Kutahya–Simav geothermal power plant has the potential to produce an installed capacity of 2.9 MWe energy, and a minimum of 17,020 MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.  相似文献   

5.
Turkey is the seventh-richest country in the world in geothermal potential. The first geothermal researches and investigations in Turkey started by the Turkey Mineral Research and Exploration Institute (MTA) in the 1960s. Upon this, 170 geothermal fields have been discovered by MTA, in which 95% of them are low-medium enthalpy fields, which are suitable mostly for direct-use applications. The overall geothermal potential in Turkey is about 38,000 MW. Of this potential, around 88% is appropriate for thermal use (temperature less than 473 K) and the remainder is appropriate for electricity production (temperature more than 473 K). Turkey has extended its involvement in geothermal energy projects, supported by loans from the Ministry of Environment, and geothermal energy is expected to increase substantially in the coming years. Overall, Turkey has an estimated 4,500 MW of geothermal power production potential.  相似文献   

6.
This paper investigates the status of geothermal development in Turkey as of the end of 1999. Turkey is one of the countries with significant potential in geothermal energy. Resource assessments have been made many times by the Mineral Research and Exploration Directorate (MTA) of Turkey. The main uses of geothermal energy are mostly moderate‐ and low‐temperature applications such as space heating and domestic hot water supply, greenhouse heating, swimming and balneology, industrial processes, heat pumps and electricity generation. The data accumulated since 1962 show that the estimated geothermal power and direct use potential are about 4500 MWe and 31 500 MWt, respectively. The direct use capacity in thermal applications is in total 640 MWt representing only 2 per cent of its total potential. Since 1990, space heating and greenhouse developments have exhibited a significant progress. The total area of greenhouses heated by geothermal energy reached up to about 31 ha with a heating capacity of 69.61 MWt. A geothermal power plant with a capacity of 20.4 MWe and a CO2 factory with a capacity of 40000 ton yr?1 have been operated in the Denizli‐Kizildere field since 1984 and 1986, respectively. Ground source heat pumps have been used in residential buildings for heating and cooling for approximately 2 years. Present applications have shown that geothermal energy in Turkey is clean and much cheaper compared to the other energy sources like fossil fuels and therefore is a promising alternative. As the projects are recognized by the public, the progress will continue. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Native energy sources of Turkey are quite limited, and the country is heavily dependent on the import of primary energy from abroad. The demand for electrical energy has increased very rapidly in Turkey due to the ongoing industrialization process and high population growth. Energy consumption in Turkey has continually increased over the past years and reached 82.2 million tons of oil equivalent (Mtoe) in 2000. This figure is expected to continue to grow and reach 115.2 Mtoe in 2005 and 153.9 Mtoe in 2010. In spite of the availability of all types of energy resources in Turkey, 66% of energy consumption is met with imports, as energy production is not sufficient to satisfy the demand for consumption. The primary energy sources of Turkey are hard coal, lignite, asphaltite, bituminous schist, hydropower, oil, natural gas, nuclear, geothermal, solar, wood, and animal and plant wastes. The required electrical energy of Turkey is primarily met from thermal and hydraulic sources, but, in addition to these, in recent times, asphaltite deposits in the Southeastern Anatolia Region of Turkey, roughly 79.969 million tons are found in the Sirnak and Silopi areas, and are mainly consumed in the residential sectors for heating due to its high calorific value (2876–5536 kcal/kg), are becoming important for Turkey to generate electricity energy. With the aim of this, it is planned to produce electrical energy after 2006 with the asphaltite taken out from Sirnak and Silopi region.  相似文献   

8.
Renewable energy is proving to be commercially viable for a growing list of consumers and uses. Renewable energy technologies provide many benefits that go well beyond energy alone. More and more, renewable energies are contributing to the three pillars of sustainable development not only in IEA countries, but globally. Turkey is an energy-importing country; more than half of the energy requirement has been supplied by imports. Domestic oil and lignite reserves are limited and lignites are characterized by high ash, sulfur, and moisture content. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development in Turkey. Turkey's geographical location has several advantages for the extensive use of most of these renewable energy sources. Because of this and the fact that it has limited fossil fuel resources, a gradual shift from fossil fuels to renewables seems to be serious and the sole alternative for Turkey. This article presents the role of the renewables in future directions in IEA countries with Turkey. At present the share of hydropower and biomass is high as 30% in the primary energy production of Turkey. In the case of solar, geothermal, and wind energy, there is an important potential for domestic heating and electricity generation.  相似文献   

9.
《Geothermics》1988,17(1):173-189
Low profits, stagnation and other negative consequences of the energy crisis of the early '70s gave renewed impetus to research and development programs in the European countries in an attempt at reducing the energy demand of the rural sectors and discovering new sources of energy. The results of these efforts can be summarized as follows: (1) The specific energy demand in agriculture has been reduced in a number of European countries. New, so-called “energy-saving” technologies have been developed and introduced in plant cultivation and animal husbandry. (2) Renewable resources have been re-discovered and are under exploration or commercial utilization: solar and wind, biomass, industrial waste, geothermal. But the significance of these resources in energy terms is not determined only by the amount consumed and the amount of other resources saved, but also by their role within the economy of the country and the effects on the trade balance. The alternative energies were therefore very much a question of policy, of assessing the influence on more productive sectors and on energy consumption on the whole. These were the factors that determined the different approaches taken in the European nations, and the different results achieved, rather than the availability of the resources. Geothermal energy could make a contribution to the energy requirements of most European countries, for the following reasons: (1) high enthalpy resources can be found in some countries (e.g. Turkey); (2) large quantities of low enthalpy resources at temperatures of 30–80°C can be found in aquifers in most European countries; (3) the rational utilization of low grade heat in district heating, agriculture and process heating could lead to considerable savings of imported fuels, since these sectors account for 40–60% of the total heat demand in Europe; (4) great progress has been made in the last few years in know-how and technology for utilizing different temperature ranges of geothermal fluids in agriculture, animal husbandry, food processing and other applications. It is difficult to assess the future of geothermal energy in agriculture in Europe, in the current world energy market. The factors influencing our assessment vary from country to country, depending on the development stage, short- and long-term policy for resource development and utilization, economic climate, investments available, etc. It is therefore equally difficult to compare the validity of the investment of the various countries in geothermal development and utilization. Much depends on the quality and quantity of the technical, technological and economical information required to reach an accurate estimate. For this reason the first target of the collaboration of scientists from different European countries is to collect all the information available in Europe, then select and reorganize this data in such a way that it can be used by different countries with different local circumstances for different types of assessment. At the present level of technology, there are many possible applications of geothermal energy. The limits change continually with advances in technology. In greenhouse heating, for example, nearly all the temperature ranges required for hot beds and hot water irrigation are actually available, which explains why the most widely developed application of geothermal resources is in agriculture, food processing and greenhouse heating. Many projects in European countries are successful, showing profits. However, the main drawback is the relatively high investment costs compared to conventional heating systems. Some technical problems have also to be solved in order to achieve the specific light, ventilation and other conditions required in greenhouse systems. An important factor in low-temperature installations is location of the installation, which affects climatization and heat transfer. This paper will discuss the different aspects of this problem.  相似文献   

10.
Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers.  相似文献   

11.
Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65 MWe, while that of direct use projects is around 795 MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570 MWe of proven, 905 MWe of probable and 1389 MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating.  相似文献   

12.
地热资源的开发利用及可持续发展   总被引:2,自引:0,他引:2  
地热资源作为一种新型能源矿产,具有分布广泛、易于开发等特点,其利用方式主要有地热发电和地热直接利用两种.我国具有良好的地热资源条件,主要为中低温地热资源.据计算,我国12个主要沉积盆地的地热可开采资源量为7500×1018J,相当于2560×108t标煤.当前,我国地热资源利用方式主要以供暖、洗浴、种植等直接利用为主;地热发电发展缓慢,主要分布在西藏;利用热泵技术开发地热资源得到了快速发展;油区地热资源的开发利用也取得了良好的经济和社会效益.但同时我国地热资源产业也面临着一些问题,包括大部分地区尚未开展地热资源勘查评价,影响了地热资源规划的制订及地热产业的发展;防腐、防垢技术还需要进一步加强研究;地热回灌率普遍过低;增强型地热系统研究有待加强等.为了促进地热资源的可持续发展,建议在加大地热资源勘查力度的同时,应以浅层地温能和热水型地热资源为主,发挥热泵技术的优势,开展地热资源的综合利用及梯级利用;重视和加快油气区地热资源的利用;在西藏等适宜地区加大高温地热能发电利用;集中全国优势技术力量,在一两个有利区域开展增强型地热系统技术探索;此外,走回灌开发道路是地热资源开发利用的必然选择.  相似文献   

13.
The energy needs of Turkey, especially electricity and heating, will eventually increase in the next years since Turkey is one of the developing countries. The current energy policy of Turkey is mainly based on the fossil fuels and natural gases. However, the fossil fuels and natural gas are extremely harmful energy resources for environment as the emissions of greenhouse gases are very high level. Therefore, a long-term renewable energy policy planning should be developed. In this study, the evaluation of renewable energy resources for Turkey is accomplished using intuitionistic fuzzy Visekriterijumsko Kompromisno Rangiranje method in which criteria are expressed in both a quantitative and qualitative way for the first time in the literature. In the evaluation process, wind, hydro, solar, geothermal, and biomass are evaluated. Four main criteria – technological, environmental, sociological, and economic – are considered as main evaluation criteria and totally 12 subcriteria related to main criteria are also taken into consideration. Moreover, the sensitivity analysis has been conducted to identify which renewable energy resource is a better option under different circumstances.  相似文献   

14.

In this work, renewable energy facilities of Turkey were investigated. Electricity is mainly produced by thermal power plants, consuming coal, lignite, natural gas, fuel oil and geothermal energy, and hydro power plants in Turkey. Turkey has no large oil and gas reserves. The main indigenous energy resources are lignite, hydro and biomass. Turkey has to adopt new, long-term energy strategies to reduce the share of fossil fuels in primary energy consumption. For these reasons, the development and use of renewable energy sources and technologies are increasingly becoming vital for sustainable economic development of Turkey. The most significant developments in renewable production are observed hydropower and geothermal energy production. Renewable electricity facilities mainly include electricity from biomass, hydropower, geothermal, and wind and solar energy sources. Biomass cogeneration is a promising method for production bioelectricity.  相似文献   

15.
Turkey's demand for energy and electricity is increasing rapidly. Turkey is heavily dependent on expensive imported energy resources that place a big burden on the economy and air pollution is becoming a great environmental concern in the country. Turkey's energy production meets nearly 28% of its total primary energy consumption. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases (GHGs). In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey presently has considerable renewable energy sources. The most important renewable sources are hydropower, biomass, geothermal, solar and wind. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Turkey has a great and ever-intensifying need for power and water supplies and they also have the greatest remaining hydro potential. Hydropower and especially small hydropower are emphasized as Turkey's renewable energy sources. Turkey's hydro electric potential can meet 33–46% of its electric energy demand in 2020 and this potential may easily and economically be developed. This paper presents a review of the potential and utilization of the renewable energy sources in Turkey.  相似文献   

16.
The investigations have been directed to technology development in the usage of natural resources as a result of increase in the world energy demand associated with environmental factors. It has also sparked interest in the scientific community to take a closer look at the energy conversion devices and develop the new techniques to better utilise the existing limited sources. Geothermal resources have a great importance for the energy potential in Turkey. Exergy of a system is the capability of doing work and exergy values of geothermal resources are the strongest criterion for determining the system efficiency. In this study, geothermal resources in Turkey have been classified based on specific exergy rates (SER). The computed results of exergy analysis can be used as a tool for evaluating the characteristics of resources, and the optimum application area of geothermal resources can also be defined.  相似文献   

17.
In Turkey, there is a much more potential for renewables, but represent about 37% of total energy production and 10% of total energy consumption. This share is not enough for the country and the governments should be increase to this situation. Renewable energy technologies of wind, biomass, hydropower, geothermal, solar thermal and photovoltaics are finally showing maturity and the ultimate promise of cost competitiveness. With respect to global environmental issues, Turkey's carbon dioxide emissions have grown along with its energy consumption. States have played a leading role in protecting the environment by reducing emissions of greenhouse gases. In this regard, renewable energy resources appear to be the one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's geographical location has several advantages for extensive use of most of these renewable energy sources. Certain policy interventions could have a dramatic impact on shaping the relationship between geological, geographic and climatic conditions and energy production. This study shows that there is enough renewable energy potential in Turkey for fuels and electricity. Especially hydropower and biomass are very well.  相似文献   

18.
Energy is undoubtedly the most key to sustainability of the economic growth of a country. Turkey is today dependent on energy approximately at a rate of 75%. The country is able to meet approximately half of its total electricity demand owing to its own limited resources. Over the past 10 years period, Turkey paid nearly half a trillion dollars for its energy bill. On the other hand, the official reserve assets are equal to 93 billion dollars in the central bank of Turkey in November 2018. New power plants are being installed and planned to decrease the energy dependency in the country, particularly for electricity generation. Of these plants, nuclear energy is currently one of the newest and the most debated issues for the country. Hence, this study mainly focused on the possible outputs of the transiting to nuclear energy such as carbon dioxide emissions, radiation doses, energy demand, economic growths, etc., in the country. Additionally, new shares on electricity generation by the new sources were foreseen with this study after the nuclear plants to be operated in Turkey.  相似文献   

19.
The use of geothermal resources for space heating dominates the direct use industry, with approximately 37% of all direct use development. Of this, 75% is provided by district heating systems. In fact, the earliest known commercial use of geothermal energy was in Chaudes-Aigues Cantal, France, where a district heating system was built in the 14th century. Today, geothermal district space heating projects can be found in 12 countries and provide some 44,772 TJ of energy yearly. Although temperatures in excess of 50 °C are generally required, resources as low as 40 °C can be used in certain circumstances, and, if geothermal heat pumps are included, space heating can be a viable alternative to other forms of heating at temperatures well below 10 °C.  相似文献   

20.
Erkan Erdogdu   《Energy Policy》2008,36(6):2182-2190
Turkey is heavily dependent on expensive imported energy resources (oil, gas and coal) that place a big burden on the economy. Air pollution is also becoming a great environmental concern in the country. In this regard, renewable energy resources appear to be one of the most efficient and effective solutions for clean and sustainable energy development in Turkey. Turkey's renewable sources are the second largest source for energy production after coal. About two-thirds of the renewable energy produced is obtained from bioenergy, which is used to meet a variety of energy needs, including generating electricity, heating homes, fueling vehicles and providing process heat for industrial facilities. The amount of usable bioenergy potential of Turkey is approximately 17 Mtoe. This article not only presents a review of the potential and utilization of the bioenergy in Turkey but also provides some guidelines for policy makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号